首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In this paper we investigate the problem of clique‐coloring, which consists in coloring the vertices of a graph in such a way that no monochromatic maximal clique appears, and we focus on odd‐hole‐free graphs. On the one hand we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, but on the other hand it is NP‐hard to decide if they are 2‐clique‐colorable, and we do not know if there exists any bound k0 such that they are all k0 ‐clique‐colorable. First we will prove that (odd hole, codiamond)‐free graphs are 2‐clique‐colorable. Then we will demonstrate that the complexity of 2‐clique‐coloring odd‐hole‐free graphs is actually Σ2 P‐complete. Finally we will study the complexity of deciding whether or not a graph and all its subgraphs are 2‐clique‐colorable. © 2009 Wiley Periodicals, Inc. J Graph Theory 62: 139–156, 2009  相似文献   

2.
We consider the problem of clique‐coloring, that is coloring the vertices of a given graph such that no maximal clique of size at least 2 is monocolored. Whereas we do not know any odd‐hole‐free graph that is not 3‐clique‐colorable, the existence of a constant C such that any perfect graph is C‐clique‐colorable is an open problem. In this paper we solve this problem for some subclasses of odd‐hole‐free graphs: those that are diamond‐free and those that are bull‐free. We also prove the NP‐completeness of 2‐clique‐coloring K4‐free perfect graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 53: 233–249, 2006  相似文献   

3.
Generalizations of Boolean elements of a BL‐algebra L are studied. By utilizing the MV‐center MV(L) of L, it is reproved that an element xL is Boolean iff xx * = 1 . L is called semi‐Boolean if for all xL, x * is Boolean. An MV‐algebra L is semi‐Boolean iff L is a Boolean algebra. A BL‐algebra L is semi‐Boolean iff L is an SBL‐algebra. A BL‐algebra L is called hyper‐Archimedean if for all xL, xn is Boolean for some finite n ≥ 1. It is proved that hyper‐Archimedean BL‐algebras are MV‐algebras. The study has application in mathematical fuzzy logics whose Lindenbaum algebras are MV‐algebras or BL‐algebras. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
The restricted‐edge‐connectivity of a graph G, denoted by λ′(G), is defined as the minimum cardinality over all edge‐cuts S of G, where GS contains no isolated vertices. The graph G is called λ′‐optimal, if λ′(G) = ξ(G), where ξ(G) is the minimum edge‐degree in G. A graph is super‐edge‐connected, if every minimum edge‐cut consists of edges adjacent to a vertex of minimum degree. In this paper, we present sufficient conditions for arbitrary, triangle‐free, and bipartite graphs to be λ′‐optimal, as well as conditions depending on the clique number. These conditions imply super‐edge‐connectivity, if δ (G) ≥ 3, and the equality of edge‐connectivity and minimum degree. Different examples will show that these conditions are best possible and independent of other results in this area. © 2005 Wiley Periodicals, Inc. J Graph Theory 48: 228–246, 2005  相似文献   

5.
A graph of order n is p ‐factor‐critical, where p is an integer of the same parity as n, if the removal of any set of p vertices results in a graph with a perfect matching. 1‐factor‐critical graphs and 2‐factor‐critical graphs are factor‐critical graphs and bicritical graphs, respectively. It is well known that every connected vertex‐transitive graph of odd order is factor‐critical and every connected nonbipartite vertex‐transitive graph of even order is bicritical. In this article, we show that a simple connected vertex‐transitive graph of odd order at least five is 3‐factor‐critical if and only if it is not a cycle.  相似文献   

6.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

7.
In this paper, we consider a two‐dimensional multi‐term time‐fractional Oldroyd‐B equation on a rectangular domain. Its analytical solution is obtained by the method of separation of variables. We employ the finite difference method with a discretization of the Caputo time‐fractional derivative to obtain an implicit difference approximation for the equation. Stability and convergence of the approximation scheme are established in the L ‐norm. Two examples are given to illustrate the theoretical analysis and analytical solution. The results indicate that the present numerical method is effective for this general two‐dimensional multi‐term time‐fractional Oldroyd‐B model.  相似文献   

8.
The circular chromatic number of a graph is a well‐studied refinement of the chromatic number. Circular‐perfect graphs form a superclass of perfect graphs defined by means of this more general coloring concept. This article studies claw‐free circular‐perfect graphs. First, we prove that if G is a connected claw‐free circular‐perfect graph with χ(G)>ω(G), then min{α(G), ω(G)}=2. We use this result to design a polynomial time algorithm that computes the circular chromatic number of claw‐free circular‐perfect graphs. A consequence of the strong perfect graph theorem is that minimal imperfect graphs G have min{α(G), ω(G)}=2. In contrast to this result, it is shown in Z. Pan and X. Zhu [European J Combin 29(4) (2008), 1055–1063] that minimal circular‐imperfect graphs G can have arbitrarily large independence number and arbitrarily large clique number. In this article, we prove that claw‐free minimal circular‐imperfect graphs G have min{α(G), ω(G)}≤3. © 2010 Wiley Periodicals, Inc. J Graph Theory 65: 163–172, 2010  相似文献   

9.
The class of graphs that are 2‐path‐transitive but not 2‐arc‐transitive is investigated. The amalgams for such graphs are determined, and structural information regarding the full automorphism groups is given. It is then proved that a graph is 2‐path‐transitive but not 2‐arc‐transitive if and only if its line graph is half‐arc‐transitive, thus providing a method for constructing new families of half‐arc‐transitive graphs. © 2012 Wiley Periodicals, Inc. J. Graph Theory 73: 225–237, 2013  相似文献   

10.
For an integer l > 1, the l‐edge‐connectivity of a connected graph with at least l vertices is the smallest number of edges whose removal results in a graph with l components. A connected graph G is (k, l)‐edge‐connected if the l‐edge‐connectivity of G is at least k. In this paper, we present a structural characterization of minimally (k, k)‐edge‐connected graphs. As a result, former characterizations of minimally (2, 2)‐edge‐connected graphs in [J of Graph Theory 3 (1979), 15–22] are extended. © 2003 Wiley Periodicals, Inc. J Graph Theory 44: 116–131, 2003  相似文献   

11.
In this paper a definition of n‐valued system in the context of the algebraizable logics is proposed. We define and study the variety V3, showing that it is definitionally equivalent to the equivalent quasivariety semantics for the “Three‐valued BCK‐logic”. As a consequence we find an axiomatic definition of the above system.  相似文献   

12.
A graph is YΔY‐reducible if it can be reduced to a vertex by a sequence of series‐parallel reductions and YΔY‐transformations. Terminals are distinguished vertices, that cannot be deleted by reductions and transformations. In this article, we show that four‐terminal planar graphs are YΔY‐reducible when at least three of the vertices lie on the same face. Using this result, we characterize YΔY‐reducible projective‐planar graphs. We also consider terminals in projective‐planar graphs, and establish that graphs of crossing‐number one are YΔY‐reducible. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 83–93, 2000  相似文献   

13.
We show that non‐isolated from below 2‐c.e. Q ‐degrees are dense in the structure of c.e. Q ‐degrees. We construct a 2‐c.e. Q ‐degree, which can't be isolated from below not only by c.e. Q ‐degrees, but by any Q ‐degree. We also prove that below any c.e. Q ‐degree there is a 2‐c.e. Q ‐degree, which is non‐isolated from below and from above (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Regular maps are cellular decompositions of surfaces with the “highest level of symmetry”, not necessarily orientation‐preserving. Such maps can be identified with three‐generator presentations of groups G of the form G = 〈a, b, c|a2 = b2 = c2 = (ab)k = (bc)m = (ca)2 = … = 1〉; the positive integers k and m are the face length and the vertex degree of the map. A regular map (G;a, b, c) is self‐dual if the assignment b?b, c?a and a?c extends to an automorphism of G, and self‐Petrie‐dual if G admits an automorphism fixing b and c and interchanging a with ca. In this note we show that for infinitely many numbers k there exist finite, self‐dual and self‐Petrie‐dual regular maps of vertex degree and face length equal to k. We also prove that no such map with odd vertex degree is a normal Cayley map. Copyright © 2011 Wiley Periodicals, Inc. J Graph Theory 69:152‐159, 2012  相似文献   

15.
Let X be a vertex‐transitive graph, that is, the automorphism group Aut(X) of X is transitive on the vertex set of X. The graph X is said to be symmetric if Aut(X) is transitive on the arc set of X. suppose that Aut(X) has two orbits of the same length on the arc set of X. Then X is said to be half‐arc‐transitive or half‐edge‐transitive if Aut(X) has one or two orbits on the edge set of X, respectively. Stabilizers of symmetric and half‐arc‐transitive graphs have been investigated by many authors. For example, see Tutte [Canad J Math 11 (1959), 621–624] and Conder and Maru?i? [J Combin Theory Ser B 88 (2003), 67–76]. It is trivial to construct connected tetravalent symmetric graphs with arbitrarily large stabilizers, and by Maru?i? [Discrete Math 299 (2005), 180–193], connected tetravalent half‐arc‐transitive graphs can have arbitrarily large stabilizers. In this article, we show that connected tetravalent half‐edge‐transitive graphs can also have arbitrarily large stabilizers. A Cayley graph Cay(G, S) on a group G is said to be normal if the right regular representation R(G) of G is normal in Aut(Cay(G, S)). There are only a few known examples of connected tetravalent non‐normal Cayley graphs on non‐abelian simple groups. In this article, we give a sufficient condition for non‐normal Cayley graphs and by using the condition, infinitely many connected tetravalent non‐normal Cayley graphs are constructed. As an application, all connected tetravalent non‐normal Cayley graphs on the alternating group A6 are determined. © 2011 Wiley Periodicals, Inc. J Graph Theory  相似文献   

16.
A graph G is 1‐Hamilton‐connected if is Hamilton‐connected for every vertex . In the article, we introduce a closure concept for 1‐Hamilton‐connectedness in claw‐free graphs. If is a (new) closure of a claw‐free graph G, then is 1‐Hamilton‐connected if and only if G is 1‐Hamilton‐connected, is the line graph of a multigraph, and for some , is the line graph of a multigraph with at most two triangles or at most one double edge. As applications, we prove that Thomassen's Conjecture (every 4‐connected line graph is hamiltonian) is equivalent to the statement that every 4‐connected claw‐free graph is 1‐Hamilton‐connected, and we present results showing that every 5‐connected claw‐free graph with minimum degree at least 6 is 1‐Hamilton‐connected and that every 4‐connected claw‐free and hourglass‐free graph is 1‐Hamilton‐connected.  相似文献   

17.
In an earlier paper 3 , we studied cycles in graphs that intersect all edge‐cuts of prescribed sizes. Passing to a more general setting, we examine the existence of T‐joins in grafts that intersect all edge‐cuts whose size is in a given set A ?{1,2,3}. In particular, we characterize all the contraction‐minimal grafts admitting no T‐joins that intersect all edge‐cuts of size 1 and 2. We also show that every 3‐edge‐connected graft admits a T‐join intersecting all 3‐edge‐cuts. © 2007 Wiley Periodicals, Inc. J Graph Theory 56: 64–71, 2007  相似文献   

18.
Two classes of statistically deformed systems are known in literature. They are, respectively, the q‐deformed systems (Lavagno and Narayana Swamy, Phys Rev E 2002, 65, 036101) and the κ‐deformed systems (Kaniadakis and Scarfone, Physica A 2002, 305, 69). In this article, a new class, i.e., the tau‐deformed systems, is introduced. For each of these systems, a consistent thermodynamics may be developed. A summary of the main similarities between the thermodynamic properties of q‐deformed and tau‐deformed systems is presented. The deformation outlined in this article is radically different from the nonextensive Tsallis statistics, where the structure of the entropy is rather arbitrary deformed via the logarithmic function. In contrast, the theory of tau‐deformed systems is developed on a purely physical basis. However, one finally shows that the tau‐systems may be described by using a new form of deformed logarithmic function. © 2009 Wiley Periodicals, Inc. Complexity, 2010  相似文献   

19.
Caching is widely recognized as an effective mechanism for improving the performance of the World Wide Web. One of the key components in engineering the Web caching systems is designing document placement/replacement algorithms for updating the collection of cached documents. The main design objectives of such a policy are the high cache hit ratio, ease of implementation, low complexity and adaptability to the fluctuations in access patterns. These objectives are essentially satisfied by the widely used heuristic called the least‐recently‐used (LRU) cache replacement rule. However, in the context of the independent reference model, the LRU policy can significantly underperform the optimal least‐frequently‐used (LFU) algorithm that, on the other hand, has higher implementation complexity and lower adaptability to changes in access frequencies. To alleviate this problem, we introduce a new LRU‐based rule, termed the persistent‐access‐caching (PAC), which essentially preserves all of the desirable attributes of the LRU scheme. For this new heuristic, under the independent reference model and generalized Zipf's law request probabilities, we prove that, for large cache sizes, its performance is arbitrarily close to the optimal LFU algorithm. Furthermore, this near‐optimality of the PAC algorithm is achieved at the expense of a negligible additional complexity for large cache sizes when compared to the ordinary LRU policy, since the PAC algorithm makes the replacement decisions based on the references collected during the preceding interval of fixed length. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 2008  相似文献   

20.
The advection‐diffusion equation has a long history as a benchmark for numerical methods. Taylor‐Galerkin methods are used together with the type of splines known as B‐splines to construct the approximation functions over the finite elements for the solution of time‐dependent advection‐diffusion problems. If advection dominates over diffusion, the numerical solution is difficult especially if boundary layers are to be resolved. Known test problems have been studied to demonstrate the accuracy of the method. Numerical results show the behavior of the method with emphasis on treatment of boundary conditions. Taylor‐Galerkin methods have been constructed by using both linear and quadratic B‐spline shape functions. Results shown by the method are found to be in good agreement with the exact solution. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号