首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The search for a model that can be used to describe the optical excitation migration in dendrimers has attracted great attention. In most cases in a dendrimer the conjugation is disrupted at the branching point; however, the excitation is delocalized. The strength of interactions among neighboring chromophores plays a key role in determining the energy migration mechanism. Conversely, having many identical chromophores held tightly together in an ordered macromolecular architecture will allow for many dipoles to be accessible for optical excitation. Therefore, the relative orientation of dipoles will be important in determining the mechanism of energy migration. Here we report the synthesis and photo-physical investigation of triarylamine-based dendrimers. Two important synthetic steps were utilized in the synthesis. First, we employed diphenylmethyl protective groups on the amines to assist in deprotective hydrogenolysis of the larger structures. Second, highly active catalysts for formation of both di- and triarylamines that are based on a 1:1 ratio of P(t-Bu)3 and Pd(dba)2 improved reaction yields of the C-N bond formation and decreased reaction times The energy migration processes in the dendrimers were investigated utilizing ultrafast time-resolved fluorescence anisotropy measurements. The fluorescence anisotropy of all three dendrimers decayed to a residual value within approximately 100 fs. This fluorescence anisotropy decay showed a general trend in decreasing with increasing dendrimer generation. The residual anisotropy value also showed a gradual decrease with an increase in the dendrimer generation. This fast energy depolarization is discussed through a coherent excitonic mechanism among dipoles oriented in different directions. We believe that the formation of coherent domains leads to fast energy migration extending over a large part of the dendrimer.  相似文献   

2.
Directly meso-meso linked porphyrin rings CZ4, CZ6, and CZ8 that respectively comprise four, six, and eight porphyrins have been synthesized in a stepwise manner from a 5,10-diaryl zinc(II) porphyrin building block. Symmetric cyclic structures have been indicated by their very simple (1)H NMR spectra that exhibit only a single set of porphyrin and their absorption spectra that display a characteristic broad nonsplit Soret band around 460 nm. Energy minimized structures calculated at the B3LYP/6-31G* level indicate that a dihedral angle between neighboring porphyrins decreases in order of CZ6 > CZ8 > CZ4, which is consistent with the (1)H NMR data. Photophysical properties of these molecules have been examined by the steady-state absorption, fluorescence, fluorescence lifetime, fluorescence anisotropy decay, and transient absorption measurements. Both the pump-power dependence on the femtosecond transient absorption and the transient absorption anisotropy decay profiles are directly related with the excitation energy migration processes within the porphyrin rings, where the exciton-exciton annihilation time and the polarization anisotropy rise time are well described in terms of the Forster-type incoherent energy hopping model. Consequently, the excitation energy hopping rates have been estimated for CZ4 (119 +/- 2 fs)(-)(1), CZ6 (342 +/- 59 fs)(-)(1), and CZ8 (236 +/- 31 fs)(-)(1), which reflect the magnitude of the electronic coupling between the neighboring porphyrins. Overall, these porphyrin rings serve as a well-defined wheel-shaped light harvesting antenna model in light of very efficient excitation energy hopping along the ring.  相似文献   

3.
Employing femtosecond pulse-shaping techniques we investigate ultrafast, coherent and incoherent dynamics in single molecules at room temperature. In first experiments single molecules are excited into their purely electronic 0-0 transition by phase-locked double-pulse sequences with pulse durations of 75 fs and 20 nm spectral band width. Their femtosecond kinetics can then be understood in terms of a 2-level system and modelled with the optical Bloch equations. We find that we observe the coherence decay in single molecules, and the purely electronic dephasing times can be retrieved directly in the time domain. In addition, the Rabi-frequencies and thus the transition dipole moments of single molecules are determined from these data. Upon excitation of single molecules into a vibrational level of the electronically excited state also incoherent intra-molecular vibrational relaxation is recorded. Increasing the spectral band width of the excitation pulses to up to 120 nm (resulting in a transform-limited pulse width of 15 fs) coherent superpositions of excited state vibrational modes, i.e. vibrational wave packets, are excited. The wave-packet oscillations in the excited state potential energy surface are followed in time by a phase-controlled pump-probe scheme, which permits to record wave packet interference, and to determine the energies of vibrational modes and their coupling strengths to the electronic transition.  相似文献   

4.
Star-shaped molecules are of growing interest as organic optoelectronic materials. Here a detailed study of their photophysics using fluorescence depolarisation is reported. Fluorescence depolarisation dynamics are studied in branched oligofluorene-truxene molecules with a truxene core and well-defined three-fold symmetry, and are compared with linear fluorene oligomers. An initial anisotropy value of 0.4 is observed which shows a two-exponential decay with time constants of 500 fs and 3-8 ps in addition to a long-lived component. The femtosecond component is attributed to exciton localisation on one branch of the molecule and its amplitude reduces when the excitation is tuned to the low energy tail of the absorption spectrum. The picosecond component shows a weak dependence on the excitation wavelength and is similar to the calculated rate of the resonant energy transfer of the localised exciton between the branches. These assignments are supported by density-functional theory calculations which show a disorder-induced splitting of the two degenerate excited states. Exciton localisation is much slower than previously reported in other branched molecules which suggests that efficient light-harvesting systems can be designed using oligofluorenes and truxenes as building blocks.  相似文献   

5.
Chlorosomes are light-harvesting antennae that enable exceptionally efficient light energy capture and excitation transfer. They are found in certain photosynthetic bacteria, some of which live in extremely low-light environments. In this work, chlorosomes from the green sulfur bacterium Chlorobaculum tepidum were studied by coherent electronic two-dimensional (2D) spectroscopy. Previously uncharacterized ultrafast energy transfer dynamics were followed, appearing as evolution of the 2D spectral line-shape during the first 200 fs after excitation. Observed initial energy flow through the chlorosome is well explained by effective exciton diffusion on a sub-100 fs time scale, which assures efficiency and robustness of the process. The ultrafast incoherent diffusion-like behavior of the excitons points to a disordered energy landscape in the chlorosome, which leads to a rapid loss of excitonic coherences between its structural subunits. This disorder prevents observation of excitonic coherences in the experimental data and implies that the chlorosome as a whole does not function as a coherent light-harvester.  相似文献   

6.
We have reported previously the ultrafast energy transfer process with a time constant of 0.8 ps from a monomeric to a dimeric subunit within a perylenetetracarboxylic diimide trimer, which was derived indirectly from a model fitting into the transient absorption ex-perimental data. Here we present a direct ultrafast fluorescence quenching measurement by employing fs time-resolved transient fluorescence spectroscopy based on noncollinear optical parametric amplification technique. The rapid decay of the monomer's emission due to en-ergy transfer was observed directly with a time constant of about 0.82 ps, in good agreement with the previous result.  相似文献   

7.
To understand the mode of energy transport in branched dendritic macromolecules, the optical excitation of a dendritic core (A-DSB) at low temperature (4.2 K) was investigated. Fluorescence depolarization measurements were utilized to probe the energy-transfer processes in the branching center at several different temperatures. We found that the anisotropy decay shows an interesting trend at low temperature where depolarization times decreased and the residual anisotropy value also decreased with decreasing temperature. The very fast anisotropy decay suggests a coherent mechanism of energy transport in these systems at low temperature. The contribution of inhomogeneous broadening is suggested as an important factor in the temperature dependence of the anisotropy decay and residual value. The change in inhomogeneous linewidth is responsible for this type of anisotropy behavior.  相似文献   

8.
The energy transfer between dye molecules and the mobility of the corresponding excitons are investigated in polymethyl methacrylate films highly doped with perylene bisimide dyes. The dynamics is measured by group delay corrected, femtosecond broad-band spectroscopy revealing the transfer route via absorption changes that are specific for the participating species. In films doped with 0.14 M perylene orange an ultrafast homotransfer between the dye molecules is found by analyzing the loss of the excitation-induced anisotropy. The process exhibits a stretched exponential time dependence which is characteristic for F?rster energy transfer between immobilized molecules. The transfer time is 1.5 ps for an average transfer distance of 2.3 nm and results in a high mobility of the optically generated excitons. In addition, we find that the excitons move to perylene orange dimers, which have formed in low concentration during the sample preparation. The observed energy transfer time is slightly shorter than expected for a direct F?rster transfer and indicates that exciton migration by multistep transfer between the monomers speeds up the transport to the dimers. In samples doped with perylene orange and perylene red heterotransfer to perylene red takes place with transfer times down to 600 fs. The mechanism is F?rster transfer as demonstrated by the agreement with calculations assuming electric dipole interaction between immobilized and statistically distributed donor and acceptor units. The model predicts the correct time dependence and concentration scaling for highly doped as well as diluted samples. The results show that ultrafast exciton migration between dye molecules in highly doped matrixes is an attractive and efficient mechanism to transport and collect energy in molecular systems and organic electronic devices. Further optimization should lead to a loss-free transport over distances typical for the thickness of active layers in these systems.  相似文献   

9.
Ultrafast internal conversion of benzene and toluene from the S(2) states was studied by time-resolved photoelectron imaging with a time resolution of 22 fs. Time-energy maps of the photoelectron intensity and the angular anisotropy were generated from a series of photoelectron images. The photoelectron kinetic energy distribution exhibits a rapid energy shift and intensity revival, which indicates nuclear motion on the S(2) adiabatic surface, while the ultrafast evolution of the angular anisotropy revealed a change in the electronic character of the S(2) adiabatic surface. From their decay profiles of the total photoelectron intensity, the time constants of 48 ± 4 and 62 ± 4 fs were determined for the population decay from the S(2) states in benzene and toluene, respectively.  相似文献   

10.
A series of π-extended cyclic thiophene oligomers of 12, 18, 24, and 30 repeat units have been studied using methods of ultrafast time-resolved absorption, fluorescence upconversion, and three-pulse photon echo. These measurements were conducted in order to examine the structure-function relationships that may affect the coherence between chromophores within the organic macrocycles. Our results indicate that an initial delocalized state can be seen upon excitation of the cyclic thiophenes. Anisotropy measurements show that this delocalized state decays on an ultrafast time scale and is followed by the presence of incoherent hopping. From the use of a phenomenological model, we conclude that our ultrafast anisotropy decay measurements suggest that the system does not reside in the Fo?rster regime and coherence within the system must be considered. Three-pulse photon echo peak shift experiments reveal a clear dependence of initial peak shift with ring size, indicating a weaker coupling to the bath (and stronger intramolecular interactions) as the ring size is increased. Our results suggest that the initial delocalized state increases with ring size to distances (and number of chromophores) comparable to the natural light-harvesting system.  相似文献   

11.
The photochemistry of perchlorinated cycloheptatriene (CHTCl(8)) has been studied by means of ultrafast pump-probe, transient anisotropy and continuous UV-irradiation experiments in various solvents as well as by DFT calculations. After UV-excitation to the 1A' '-state, two competing reactions occur--a [1,7]-sigmatropic chlorine migration via two ultrafast internal conversions and a [4,5]-electrocyclization forming octachlorobicylo[3.2.0]hepta-[2,6]-diene. The first reaction has been studied by excitation with a 263 nm femtosecond-laser pulse. Pump-probe experiments reveal a first, solvent-independent time constant, tau1(CHTCl(8)) = 140 fs, that can be associated with the electronic relaxation of the 2A'-1A' ' transition, while a second one, tau2(CHTCl(8)), ranges from 0.9 to 1.8 ps depending on the polarity of the solvent. This finding is consistent with a [1,7]-chlorine migration during the 1A'-2A' transition where the migrating chlorine atom is partly negatively charged. The charge separation has also been confirmed by DFT calculations. Transient anisotropy measurements result in a time zero value of r(0) = 0.35 after deconvolution and a decay constant of tau1(a) = 120 fs, which can be explained by vibrational motions of CHTCl(8) in the electronically excited states, 1A' ' and 2A'. After continuous UV-irradiation of CHTCl(8), octachlorobicylo[3.2.0]hepta-[2,6]-diene is primarily formed with a solvent-dependent yield. From these investigations, we suggest a relaxation mechanism for CHTCl(8) after photoexcitation that is comparable to cycloheptatriene.  相似文献   

12.
The understanding of the mechanism of the enhanced two-photon absorption (TPA) in multibranched chromophore systems is of importance to the design of materials with the large TPA cross-sections and for future applications. In this communication, the mechanism of enhanced TPA properties is investigated. For a dendritic model system, the excited-state dynamics for both population (T1-process) and phase relaxation (T2-process) processes involved are investigated by a combination of time-resolved spectroscopic techniques. The results of time-resolved fluorescence anisotropy are compared with previous results obtained from other branched chromophore systems. It is found that the PRL-701 trimer system, which possesses the large enhancement of two-photon absorption cross-section, gives a faster anisotropy decay (fluorescence upconversion and transient absorption), a longer population relaxation time (fluorescence lifetime), and a weaker coupling to the solvent (a larger photon echo peak shift initial value). New strategies for rational design of large TPA materials can be achieved based on a better understanding of the mechanism of the enhancement.  相似文献   

13.
The molecular reorientation of liquid water is key to the hydration and stabilization of molecules and ions in aqueous solution. A powerful technique to study this reorientation is to measure the time-dependent anisotropy of the excitation of the O-H/O-D stretch vibration of HDO dissolved in D2O/H2O using femtosecond midinfrared laser pulses. In this paper, we present and discuss experiments in which this technique is used to study the correlation between the molecular reorientation of the water molecules and the strength of the hydrogen-bond interactions. On short time scales (<200 fs), it was found that the anisotropy shows a partial decay due to librational motions of the water molecules that keep the hydrogen bond intact. On longer time scale (>200 fs), the anisotropy shows a complete decay with an average time constant of 2.5 ps. From the frequency dependence of the anisotropy dynamics, it follows that a subensemble of the water molecules shows a fast reorientation that is accompanied by a large change of the vibrational frequency. This finding agrees with the molecular jumping mechanism for the reorientation of liquid water that has recently been proposed by Laage and Hynes.  相似文献   

14.
P. Hamm 《Chemical physics》1995,200(3):415-429
The accessible time resolution in femtosecond infrared experiments is shorter than the typical phase relaxation time of a vibronic transition. Therefore, coherent interaction of the light pulses with the sample may disturb the observed absorbance signals. Coherence results in an artifact known as perturbed free induction decay, which may be misinterpreted as an intrinsic incoherent temporal evolution of the sample. In the present paper, a model is presented describing this effect for the general situation, where a complex molecule containing many overlapping vibrational modes is investigated. The model leads to an efficient linear least square fit algorithm allowing the analysis of huge data sets. The model and the fit algorithm are applied to transient absorbance changes observed in a large dye molecule. It is demonstrated that it is possible to separate an ultrafast energy relaxation process from the perturbed free induction decay signal. In addition, the analysis of the perturbed free induction decay effect itself allows one to obtain information on the instantaneous absorbance change of the sample.  相似文献   

15.
A multifunctional ligand-coated nanoparticle system containing approximately 2000 highly two-photon absorptive chromophores has been investigated by means of steady-state and femtosecond time-resolved spectroscopy. This system with a high local concentration of chromophores showed remarkably low self-quenching and a high fluorescence quantum yield, which is important for a variety of two-photon sensing and imaging applications. We have observed evidence for ultrafast energy migration in these chromophore shell-metal nanoparticle systems. Time-resolved experiments also showed non-zero residual anisotropy after the initial fast decay, which can be interpreted as due to the formation of the specific domains on the metal surfaces. This investigation opens new avenues toward the development of multi-chromophoric efficient TPA fluorescence sensing/imaging systems with large numbers of chromophores per one metal particle nanoparticle.  相似文献   

16.
The excited-state intramolecular proton transfer in the aromatic polycycle 10-hydroxybenzo[h]quinoline is investigated by means of transient absorption experiments with 30 fs time resolution, classical dynamics and wavepacket dynamics. The experiments establish the ultrafast transfer after UV excitation and show signatures of coherent vibrational motion in the keto product. To elucidate details of the proton transfer mechanism, the classical dynamics is also performed for 2-(2′-hydroxyphenyl)benzothiazole and the results are compared. For both systems the proton transfer takes place on the ultrafast scale of 30–40 fs, with good agreement between the theoretical investigations and the measurements. The dynamics simulations show that for both molecules the proton is handed over by means of skeletal deformation of the molecule. Due to the more rigid structure of 10-hydroxybenzo[h]quinoline the hydrogen migration mode participates more actively than in 2-(2′-hydroxyphenyl)benzothiazole.  相似文献   

17.
Femtosecond fluorescence anisotropy measurements for a variety of cyclic porphyrin arrays such as Zn(II)porphyrin m-trimer and hexamer are reported along with o-dimer and monomer as reference molecules. In the porphyrin arrays, a pair of porphyrin moieties are joined together via triphenyl linkage to ensure cyclic and rigid structures. Anisotropy decay times of the porphyrin arrays can be well described by the F?rster incoherent excitation hopping process between the porphyrin units. Exciton coupling strengths of 74 and 264 cm(-1) for the m-trimer and hexamer estimated from the observed excitation energy hopping rates are close to those of B800 and B850, respectively, in the LH2 bacterial light-harvesting antenna. Thus, these cyclic porphyrin array systems have proven to be useful in understanding energy migration processes in a relatively weak interaction regime in light of the similarity in overall structures and constituent chromophores to natural light-harvesting arrays.  相似文献   

18.
The mechanism of energy transport in branching structures is suggestively related to the geometry of the multichromophore architecture. In organic conjugated dendrimers, both incoherent (hopping) and coherent energy transfer processes have been observed from different dendritic architectures with different building blocks. In this communication, we report the investigation of three fundamental dendritic architectures (G0) with the same attached chromophores, but with different core atoms, C, N, and P. The synthesis of a phosphorus-containing G0 system with distyrylbenzene chromophores is provided. These three systems provide a comparison by which the relative interaction of branching chromophores can be compared on the basis of their different branching centers. Ultrafast fluorescence anisotropy measurements provide a dual measure of the geometry of the chromophores around the different central units as well as the strength of the interactions among chromophores. The nitrogen-cored system appeared to have both the strongest coupling of chromophore excitation as well as the most planar geometry of the three. Interestingly, the phosphorus system appeared to have the least planar geometry, and its interaction strength was found to be stronger than that observed for the carbon system. These results provide a comparison of the energy migration dynamics of the most common and new dendritic architectures with applications for light emission and light harvesting.  相似文献   

19.
结合时间分辨的飞秒光电子影像(TRPEI)技术和时间分辨的质谱技术,研究了氯化苄(BzCl)分子内转换动力学过程.从光电子影像中获得了光电子动能分布和角度分布.氯化苄分子吸收两个400nm的光子后从基态跃迁到S4态和S2态.获得的母体离子随泵浦-探测时间延迟变化的曲线可以用两个指数函数进行拟合,包括一个时间常数为50fs的快速组分和一个时间常数为910fs的慢速组分.通过分析光电子动能分布随延迟时间的变化,我们认为分子被激发到S4态后在很短的时间内与S2态发生耦合迅速弛豫到S2态,然后再经内转换(IC)弛豫到S1态.最初布居的激发态分子经过内转换弛豫到S1态的时间尺度为50fs.910fs的慢速时间组分反映了分子弛豫到S1态后,经内转换向基态S0的弛豫.光电子角度分布的各向异性参数从零时刻的0.87增加到25fs时的0.94,然后逐渐减小到190fs时刻的0.59的现象,也反映了氯化苄分子从S4态耦合到S2态,然后内转换到S1态的动力学过程.  相似文献   

20.
In order to understand exciton migration and fluorescence intensity fluctuation mechanisms in conjugated polymer single molecules, we studied fluorescence decay dynamics at "on" and "off" fluorescence intensity levels with 20 ps time resolution using MEH-PPV [poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] dispersed in PMMA. Two types of intensity fluctuations were distinguished for single chains of conjugated polymers. Abrupt intensity fluctuations (blinking) were found to be always accompanied by corresponding changes in fluorescence lifetime. On the contrary, during "smooth" intensity fluctuations no lifetime change was observed. Time-resolved data in combination with data on fluorescence emission and excitation anisotropy lead to a picture where a single polymer molecule is seen as consisting of several energy transfer domains. Exciton migration is efficient within a domain and not efficient between domains. Each domain can have several emitting low-energy sites over which the exciton continuously migrates until it decays. Emission of individual domains is often highly polarized. Fluorescence from a domain can be strongly quenched by Forster energy transfer to a quencher (hole polaron) if the domain overlaps with the quenching sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号