首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the exact low energy spectra of the spin 1/2 Heisenberg antiferromagnet on small samples of the kagomé lattice of up to N=36 sites. In agreement with the conclusions of previous authors, we find that these low energy spectra contradict the hypothesis of Néel type long range order. Certainly, the ground state of this system is a spin liquid, but its properties are rather unusual. The magnetic () excitations are separated from the ground state by a gap. However, this gap is filled with nonmagnetic () excitations. In the thermodynamic limit the spectrum of these nonmagnetic excitations will presumably develop into a gapless continuum adjacent to the ground state. Surprisingly, the eigenstates of samples with an odd number of sites, i.e. samples with an unsaturated spin, exhibit symmetries which could support long range chiral order. We do not know if these states will be true thermodynamic states or only metastable ones. In any case, the low energy properties of the spin 1/2 Heisenberg antiferromagnet on the kagomé lattice clearly distinguish this system from either a short range RVB spin liquid or a standard chiral spin liquid. Presumably they are facets of a generically new state of frustrated two-dimensional quantum antiferromagnets. Received: 27 November 1997 / Accepted: 29 January 1998  相似文献   

2.
We study low-lying states of theXY and Heisenberg antiferromagnets on a triangular lattice to clarify whether spontaneous symmetry breaking occurs atT=0 in the thermodynamic limit. Approximate forms of low-lying states are proposed, in which degrees of freedom of the sublattice magnetization and of the chirality are separated. These approximate states have a long-range order and twofold structures. It is shown that low-lying states can be accurately described with the present approximation. It has been argued that low-lying states play an important role in symmetry breaking. With the help of this approximation, we discuss the contribution of low-lying states to symmetry breaking of two types, namely creation of the spontaneous sublattice magnetization and the spontaneous chirality. Furthermore, to show evidence for the occurrence of symmetry breaking, we numerically study the low-lying states of finite systems of theXY and Heisenberg antiferromagnets. It is found that the necessary conditions for the symmetry breaking to occur are satisfied in these models.  相似文献   

3.
Starting from the hypothesis of a second order transition we have studied modifications of the original Heisenberg antiferromagnet on a stacked triangular lattice (STA-model) by the Monte Carlo technique. The change is a local constraint restricting the spins at the corners of selected triangles to add up to zero without stopping them from moving freely (STAR-model). We have studied also the closely related dihedral and trihedral models which can be classified as Stiefel models. We have found indications of a first order transition for all three modified models instead of a universal critical behavior. This is in accordance with the renormalization group investigations but disagrees with the Monte Carlo simulations of the original STA-model favoring a new universality class. For the corresponding x-y antiferromagnet studied before, the second order nature of the transition could also not be confirmed. Received 17 May 1999 and Received in final form 30 July 1999  相似文献   

4.
We extend and apply a previously developed method for a semiclassical treatment of a system with large spin S. A multisite Heisenberg Hamiltonian is transformed into an effective classical Hamilton function which can be treated by standard methods for classical systems. Quantum effects enter in form of multispin interactions in the Hamilton function. The latter is written in the form of an expansion in powers of J/(TS), where J is the coupling constant. Main ingredients of our method are spin coherent states and cumulants. Rules and diagrams are derived for computing cumulants of groups of operators entering the Hamiltonian. The theory is illustrated by calculating the quantum corrections to the free energy of a Heisenberg chain which were previously computed by a Wigner-Kirkwood expansion. Received 5 May 1999 and received in final form 24 September 1999  相似文献   

5.
We study the Heisenberg antiferromagnet in two dimensions on a triangular lattice. Using the coherent state representation for spinS1 and performing the spatial continuum limit we arrive at the actionL of a nonlinear model. The consituent classical fields ofL are a set of three three-dimensional orthogonal unit vectors. The origin of the symmetrics ofL is uncovered. We investigate this model by a one-loop renormalisation group analysis. In the high temperature limit as well as at zero temperature, the model scales to a fixed point of higher symmetry.Work supported in part by the Deutsche Forschungsgemeinschaft  相似文献   

6.
We present magnetic properties of the three-band Hubbard model in the para- and antiferromagnetic phase on a hypercubic lattice calculated with the Dynamical Mean-Field Theory (DMFT). To allow for solutions with broken spin-symmetry we extended the approach to lattices with AB-like structure. Above a critical sublattice magnetization one can observe rich structures in the spectral-functions similar to the t-J model which can be related to the well known bound states for one hole in the Neél-background. In addition to the one-particle properties we discuss the static spin-susceptibility in the paramagnetic state at the points and for different dopings . The -T-phase-diagram exhibits an enhanced stability of the antiferromagnetic state for electron-doped systems in comparison to hole-doped. This asymmetry in the phase diagram is in qualitative agreement with experiments for high-Tc materials. Received: 28 May 1998 / Revised and Accepted: 14 September 1998  相似文献   

7.
We apply the contractor renormalization (CORE) method to the spin half Heisenberg antiferromagnet on the frustrated checkerboard and pyrochlore lattices. Their ground states are spin-gapped singlets which break lattice symmetry. Their effective Hamiltonians describe fluctuations of orthogonal singlet pairs on tetrahedral blocks, at an emergent low energy scale. We discuss low temperature thermodynamics and new interpretations of finite size numerical data. We argue that our results are common to many models of quantum frustration.  相似文献   

8.
Frustrated antiferromagnets are important materials whose quantum Monte Carlo simulation suffers from a severe sign problem. We construct a nested cluster algorithm which uses a powerful strategy to address this problem. For the spin 1/2 Heisenberg antiferromagnet on a kagome and on a frustrated square lattice the sign problem is eliminated for large systems. The method is applicable to general lattice geometries but limited to moderate temperatures.  相似文献   

9.
We study the “mixed spin” isotropic ladder system having S=1 spins on one leg and S=1/2 spins on the other, with general-type exchange interactions between spins on neighboring rungs. A set of model Hamiltonians with exact ground states in the form of a certain matrix product wave function is obtained. We show that sufficiently strong frustration can lead to exotic singlet ground states with infinite (exponential) degeneracy. We also list a couple of rather simple models with nontrivial ground states, including a model with only bilinear exchange. Received: 2 December 1997 / Accepted: 28 January 1998  相似文献   

10.
Motivated by the observation of a spin-glass transition in almost disorder-free Kagome antiferromagnets, and by the specific form of the effective low-energy model of the S = 1/2, trimerized Kagome antiferromagnet, we investigate the possibility to obtain a spin-glass behavior in two-component, disorder-free models. We concentrate on a toy-model, a modified Ashkin-Teller model in a magnetic field that couples only to one species of spins, for which we prove that a dynamic spin-glass behavior occurs. The dynamics of the magnetization is closely related to that of the underlying Ising model in zero field in which spins and pseudo-spins are intimately coupled. The spin-glass like history dependence of the magnetization is a consequence of the ageing of the underlying Ising model. Received 21 September 2001 and Received in final form 16 January 2002  相似文献   

11.
The nature of the phase transition for the XY stacked triangular antiferromagnet (STA) is a controversial subject at present. The field theoretical renormalization group (RG) in three dimensions predicts a first order transition. This prediction disagrees with Monte-Carlo (MC) simulations which favor a new universality class or a tricritical transition. We simulate by the Monte-Carlo method two models derived from the STA by imposing the constraint of local rigidity which should have the same critical behavior as the original model. A strong first order transition is found. Following Zumbach we analyze the second order transition observed in MC studies as due to a fixed point in the complex plane. We review the experimental results in order to clarify the critical behavior observed. Received: 18 February 1998 / Revised: 24 April 1998 / Accepted: 30 April 1998  相似文献   

12.
We illustrate how the systematic inclusion of multi-spin correlations of the quantum spin–lattice systems can be efficiently implemented within the framework of the coupled-cluster method by examining the ground-state properties of both the square-lattice and the frustrated triangular-lattice quantum antiferromagnets. The ground-state energy and the sublattice magnetization are calculated for the square-lattice and triangular-lattice Heisenberg antiferromagnets, and our best estimates give values for the sublattice magnetization which are 62% and 51% of the classical results for the square and triangular lattices, respectively. We furthermore make a conjecture as to why previous series expansion calculations have not indicated Néel-like long-range order for the triangular-lattice Heisenberg antiferromagnet. We investigate the critical behavior of the anisotropic systems by obtaining approximate values for the positions of phase transition points.  相似文献   

13.
We study the four-state antiferromagnetic Potts model on the triangular lattice. We show that the model has six types of defects which diffuse and annihilate according to certain conservation laws consistent with their having a vector-valued topological charge. Using the properties of these defects, we deduce a (2+2)-dimensional height representation for the model and hence show that the model is equivalent to the three-state Potts antiferromagnet on the Kagomé lattice and to bond-coloring models on the triangular and honeycomb lattices. We also calculate critical exponents for the ground-state ensemble of the model. We find that the exponents governing the spin–spin correlation function and spin fluctuations violate the Fisher scaling law because of constraints on path length which increase the effective wavelength of the spin operator on the height lattice. We confirm our predictions by extensive Monte Carlo simulations of the model using the Wang–Swendsen–Kotecký cluster algorithm. Although this algorithm is not ergodic on lattices with toroidal boundary conditions, we prove that it is ergodic on lattices whose topology has no noncontractible loops of infinite order, such as the projective plane. To guard against biases introduced by lack of ergodicity, we perform our simulations on both the torus and the projective plane.  相似文献   

14.
《Nuclear Physics B》2005,729(3):317-360
By electron or hole doping quantum antiferromagnets may turn into high-temperature superconductors. The low-energy dynamics of antiferromagnets are governed by their Nambu–Goldstone bosons—the magnons—and are described by an effective field theory analogous to chiral perturbation theory for the pions in strong interaction physics. In analogy to baryon chiral perturbation theory—the effective theory for pions and nucleons—we construct a systematic low-energy effective theory for magnons and electrons or holes in an antiferromagnet. The effective theory is universal and makes model-independent predictions for the entire class of antiferromagnetic cuprates. We present a detailed analysis of the symmetries of the Hubbard model and discuss how these symmetries manifest themselves in the effective theory. A complete set of linearly independent leading contributions to the effective action is constructed. The coupling to external electromagnetic fields is also investigated.  相似文献   

15.
We develop an effective theory to study the skyrmion dynamics in the presence of a hole (removed spins from the lattice) in Néel ordered two-dimensional antiferromagnets with arbitrary spin value S. The general equation of motion for the “mass center” of this structure is obtained. The frequency of small amplitude oscillations of pinned skyrmions around the defect center is calculated. It is proportional to the hole size and inversely proportional to the square of the skyrmion size.  相似文献   

16.
We use the vertex state model approach to construct optimum ground states for a large class of quantum spin-2 antiferromagnets on the square lattice. Optimum ground states are exact ground states of the model which minimize all local interaction operators. The ground state contains two continuous parameters and exhibits a second order phase transition from a disordered phase with exponentially decaying correlation functions to a Néel ordered phase. The behaviour is very similar to that of the corresponding ground state of a quantum spin-3/2 model on the hexagonal lattice, which has been investigated in an earlier paper. Received 8 April 1999  相似文献   

17.
18.
Classical uniaxially anisotropic Heisenberg and XY antiferromagnets in a field along the easy axis on a square lattice are analysed, applying ground state considerations and Monte Carlo techniques. The models are known to display antiferromagnetic and spin-flop phases. In the Heisenberg case, a single-ion anisotropy is added to the XXZ antiferromagnet, enhancing or competing with the uniaxial exchange anisotropy. Its effect on the stability of non-collinear structures of biconical type is studied. In the case of the anisotropic XY antiferromagnet, the transition region between the antiferromagnetic and spin-flop phases is found to be dominated by degenerate bidirectional fluctuations. The phase diagram is observed to resemble closely that of the XXZ antiferromagnet without single-ion anisotropy.  相似文献   

19.
The c-axis charge transport of the hole doped triangular antiferromagnet is investigated within the tJ model by considering the incoherent interlayer hopping.It is shown that the c-axis charge transport of the hole doped triangular antiferromagnet is essentially determined by the scattering from the in-plane fluctuation.The c-axis conductivity spectrum shows a lov-energy peak and the unusual high-energy broad band,while the c-axis resistivity is characterized by a crossover from the high temperature metallic-like behavior to the Iow temperature insulating-like behavior,which is qualitatively consistent with those of the hole doped square lattice antiferromagnet.  相似文献   

20.
Low-energy singlet states of a spin-1/2 trimerized kagomé antiferromagnet are mapped to an effective quantum dimer model on a triangular lattice. The mapping is done in the first-order of perturbation theory in a weaker coupling constant of the trimerized model. The derived quantum dimer model is dominated by kinetic energy terms (dimer resonances) on a few shortest loops of the triangular lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号