首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A two-dimensional (2D) square-grid coordination polymer, {[Ni(cyclam)]2[BPTC]}n.2nH2O (1), has been assembled from [Ni(cyclam)](ClO4)2 (cyclam = 1,4,8,11-tetraazacyclotetradecane) and H4BPTC (H4BPTC = 1,1'-biphenyl-2,2',6,6'-tetracarboxylic acid) in H2O/MeOH (2.5:1, v/v) in the presence of triethylamine. When solid 1 was immersed in the EtOH solutions of AgNO3 (1.3 x 10(-1) M) and NaAuCl4.2H2O (3.4 x 10(-2) M), respectively, for 5 min at room temperature, solids including Ag (3.7 +/- 0.4 nm, diameter) and Au (2 nm, diameter) nanoparticles were formed by the redox reactions between Ni(II) ions incorporated in 1 and metal ions, as evidenced by HRTEM images, EPR, and XPS spectra. When single-crystal 1 was heated at 180 degrees C under 10(-5) Torr for 24 h, it was transformed to dehydrated compound {[Ni(cyclam)]2[BPTC]}n (2) in the single-crystal-to-single-crystal manner. The X-ray crystal structure of 2 reveals extensive dynamic motions of the molecular components in response to guest removal, involving rotation of the carboxylate and macrocycle, swing of the biphenyl, and bending of the macrocyclic coordination plane toward the carboxylate plane, which reduces the interlayer distance.  相似文献   

2.
Wu CD  Ma L  Lin W 《Inorganic chemistry》2008,47(24):11446-11448
Hierarchically ordered homochiral metal-organic frameworks were built from the Cu(II) connecting point and the new (R)-6,6'-dichloro-2,2'-diethoxy-1,1'-binaphthyl-4,4'-bis(p-ethynylpyridine) bridging ligand (L). [Cu(3)L(4)(DMF)(6)(H(2)O)(3)(ClO(4))][ClO(4)](5).10DMF.10EtOH.7H(2)O (1) adopts a unique three-dimensional framework structure via simultaneous interlocking and interpenetration of one-dimensional ladders formed by linking rectangles of 24.8 x 48.6 A(2) in dimensions, whereas [Cu(3)L(5)(DMF)(8)][ClO(4)](6).6DMF.8EtOH.Et(2)O.6H(2)O (2) exhibits an interesting network topology by threading two-dimensional coordination square grids with one-dimensional coordination polymers.  相似文献   

3.
Reactions between [M(N(4)-macrocycle)](2+) (M = Zn(II) and Ni(II); macrocycle ligands are either CTH = d,l-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane or cyclam = 1,4, 8, 11-tetrazaazaciclotetradecane) and [M(CN)(6)](3-) (M = Fe(III) and Mn(III)) give rise to cyano-bridged assemblies with 1D linear chain and 2D honeycomblike structures. The magnetic measurements on the 1D linear chain complex [Fe(cyclam)][Fe(CN)(6)].6H(2)O 1 points out its metamagnetic behavior, where the ferromagnetic interaction operates within the chain and the antiferromagnetic one between chains. The Neel temperature, T(N), is 5.5 K and the critical field at 2 K is 1 T. The unexpected ferromagnetic intrachain interaction can be rationalized on the basis of the axially elongated octahedral geometry of the low spin Fe(III) ion of the [Fe(cyclam)](3+) unit. The isostructural substitution of [Fe(CN)(6)](3-) by [Mn(CN)(6)](3-) in the previously reported complex [Ni(cyclam)](3)[Fe(CN)(6)](2).12H(2)O 2 leads to [Ni(cyclam)](3)[Mn(CN)(6)](2).16 H(2)O 3, which exhibits a corrugated 2D honeycomblike structure and a metamagnetic behavior with T(N) = 16 K and a critical field of 1 T. In the ferromagnetic phase (H > 1 T) this compound shows a very important coercitive field of 2900 G at 2 K. Compound [Ni(CTH)](3)[Fe(CN)(6)](2).13H(2)O 4, C(60)H(116)Fe(2)N(24)Ni(3)O(13), monoclinic, A 2/n, a = 20.462(7), b = 16.292(4), c = 27.262(7) A, beta = 101.29(4) degrees, Z = 4, also has a corrugated 2D honeycomblike structure and a ferromagnetic intralayer interaction, but, in contrast to 2 and 3, does not exhibit any magnetic ordering. This fact is likely due to the increase of the interlayer separation in this compound. ([Zn(cyclam)Fe(CN)(6)Zn(cyclam)] [Zn(cyclam)Fe(CN)(6)].22H(2)O.EtOH) 5, C(44)H(122)Fe(2)N(24)O(23)Zn(3), monoclinic, A 2/n, a = 14.5474(11), b = 37.056(2), c = 14.7173(13) A, beta = 93.94(1) degrees, Z = 4, presents an unique structure made of anionic linear chains containing alternating [Zn(cyclam)](2+) and [Fe(CN)(6)](3)(-) units and cationic trinuclear units [Zn(cyclam)Fe(CN)(6)Zn(cyclam)](+). Their magnetic properties agree well with those expected for two [Fe(CN)(6)](3-) units with spin-orbit coupling effect of the low spin iron(III) ions.  相似文献   

4.
The initial use of pyridine-2,6-diamidoxime (pdamoH(2)) in metal cluster and polymer chemistry is described. Depending on the reaction conditions employed, the Cu(ClO(4))(2)·6H(2)O/pdamoH(2) system has provided access to the dinuclear compound [Cu(2)(pdamoH)(2)(ClO(4))(2)(MeOH)(2)] (1), the chain-like polymer [Cu(2)(pdamoH)(2)](n)(ClO(4))(2n) (2) and to the tetranuclear cluster [Cu(4)(pdamo)(2)(pdamoH)(2)](ClO(4))(2) (3). Single-crystal, X-ray crystallography reveals different coordination modes for the pdamoH(-) ligand in each compound, providing the first evidence for the flexibility and versatility of the anionic forms of pdamoH(2). Variable-temperature magnetic susceptibility studies indicate very strong antiferromagnetic coupling in the three complexes, attributable to the double oximato bridges which link the Cu(II) spin carriers.  相似文献   

5.
A series of complexes of copper(II)-containing a perchlorotriphenylmethyl radical functionalized with a carboxylic group as a new ligand is reported. The compounds [Cu(PTMMC)(2)(L)(3)](PTMMC = (tetradecachloro-4-carboxytriphenyl)methyl radical; L =(1) H(2)O, (2) pyrimidine and ethanol or (3) pyridine), [Cu(2)(PTMMC)(2)(MeCOO)(2)(H(2)O)(2)](4) and [Cu(HPTMMC)(2)(L)(3)](HPTMMC =alpha-H-(tetradecachlorotriphenyl)methane-4-carboxylic acid; L = pyridine)(5) were structurally characterized. In complexes 1, 2, 3, and 5, the copper(II) ion is coordinated to two PTMMC (or HPTMMC) units in a slightly distorted square planar surrounding, while 4 shows a paddle-wheel copper(II) dimer structure, where each Cu metal ion has four O atoms of different carboxylate groups, two of them belonging to two PTMMC radicals. The copper(II)-radical exchange couplings are antiferromagnetic for complexes 1, 2 and 3. A linear three-spin model was applied to complexes 1, 2 and 3 to give J/k(B)=-24.9, -15.0 and -20.7 K, respectively. Magnetic properties of 4 show that it is one of the scarce examples of a spin-frustrated system composed of organic radicals and metal ions. In this case, experimental data were fitted to a magnetic model based on a symmetrical butterfly arrangement to give a copper(II)-copper(II) exchange coupling of J/k(B)=-350.0 K and a copper(II)-radical exchange coupling of J/k(B)=-21.3 K, similar to that observed for the copper(II)-radical interactions in complexes, and.  相似文献   

6.
Though numerous metal-organic frameworks or polymers have been reported, the organic building blocks are usually not redox-active. On the other hand, some mono-, di- or tri-nuclear compounds with tetrathiafulvalene (TTF) have been prepared, although little is known about the coordination polymers combined with paramagnetic metals and organic TTF ligands. We report herein a series of coordination polymers of copper(II) and manganese(II) with TTF dicarboxylate ligand (L). Compound 1, [CuL(2,2-bpy)](n), is a one-dimensional (1-D) coordination polymer with five-coordinated square-pyramidal Cu(II) centers. Mn(II) complex 2, [MnL(2,2-bpy)](n), also takes a 1-D structure, showing a double-bridged mode by carboxylate groups. The 4,4-bipyridine compound 3, [MnL(4,4-bpy)(H(2)O)](n)·CH(3)CN, takes a 2-D grid network. A zinc(II) compound 4, [ZnL(4,4-bpy)(H(2)O)](n)·CH(3)CN, isomorphous structure with 3, is also presented. The electrochemical properties of the solid-state compounds were investigated by cyclic voltammetry using surface-modified electrodes. As usually observed in TTF derivatives, two sets of redox-waves were observed. The values of E(1/2)(1) of compounds 1-4 are in the order of 2(Mn) ≈ 3(Mn) < 1(Cu) < 4(Zn), indicating that the metal coordination can affect the potential shift of the TTF ligand. Weak antiferromagnetic exchanges are observed for compounds 1, 2, and 3.  相似文献   

7.
A new polydentate ligand 4,4'-bipyridazine (4,4'-bpdz) was prepared by employing inverse electron demand cycloaddition of 1,2,4,5-tetrazine. A unique combination of structural simplicity, ampolydentate character and efficient donor properties towards Cu(I), Cu(II) and Zn(II) provide wide new possibilities for the synthesis of coordination polymers incorporating the 4,4'-bpdz module either as a bi-, tri- or tetradentate connector between the metal ions. 1D coordination polymers Cu(2)(4,4'-bpdz)(CH(3)CO(2))(4) x 4H(2)O and Zn(4,4'-bpdz)(NO(3))(2), and interpenetrated (4,4)-nets in [Cu(4,4'-bpdz)(2)(H(2)O)(2)]S(2)O(6) were closely related to 4,4'-bipyridine compounds. 1D "ladder-like" polymer Cu(2)(4,4'-bpdz)(3)(CF(3)CO(2))(4) and the unprecedented 3D binodal net ({8(6)}{6(3);8(3)}) in [Cu(3)(4,4'-bpdz)(6)(H(2)O)(4)](BF(4))(6) x 6H(2)O were based upon a combination of linear and angular organic bridges. Complex [Cu(3)(OH)(2)(4,4'-bpdz)(3)(H(2)O)(2){CF(3)CO(2)}(2)](CF(3)CO(2))(2) x 2H(2)O has a "NbO-like" 3D topology incorporating discrete dihydroxotricopper(II) clusters linked by tri- and tetradentate ligands. The tetradentate function of the 4,4'-bpdz ligand was especially relevant for copper(I) complexes, which adopt layered Cu(2)X(2)(4,4'-bpdz) (X = Cl, Br) or 3D chiral framework (X = I) structures based upon infinite (CuX)(n) chains. The electron deficient character of the ligand was manifested by short anion-pi interactions (O-pi 3.02-3.20; Cl-pi 3.35 A), which may be involved as a factor for controlling the supramolecular structure.  相似文献   

8.
The compound [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4) (D(1) = dinucleating ligand with two tris(2-pyridylmethyl)amine units covalently linked in their 5-pyridyl positions by a -CH(2)CH(2)- bridge) selectively promotes cleavage of DNA on oligonucleotide strands that extend from the 3' side of frayed duplex structures at a site two residues displaced from the junction. The minimal requirements for reaction include a guanine in the n (i.e. first unpaired) position of the 3' overhang adjacent to the cleavage site and an adenine in the n position on the 5' overhang. Recognition and strand scission are independent of the nucleobase at the cleavage site. The necessary presence of both a reductant and dioxygen indicates that the intermediate responsible for cleavage is produced by the activation of dioxygen by a copper(I) form of the dinuclear complex. The lack of sensitivity to radical quenching agents and the high level of site selectivity in scission suggest a mechanism that does not involve a diffusible radical species. The multiple metal center exhibits a synergy to promote efficient cleavage as compared to the action of a mononuclear analogue [Cu(II)(TMPA)(H(2)O)](ClO(4))(2) (TMPA = tris(2-pyridylmethyl)amine) and [Cu(OP)(2)](2+) (OP = 1,10-phenanthroline) at equivalent copper ion concentrations. The dinuclear complex, [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4), is even capable of mediating efficient specific strand scission at concentrations where [Cu(OP)(2)](2+) does not detectably modify DNA. The unique coordination and reactivity properties of [Cu(II)(2)(D(1))(H(2)O)(2)](ClO(4))(4) are critical for its efficiency and site selectivity since an analogue, [Cu(II)(2)(DO)(Cl(2))](ClO(4))(2), where DO is a dinucleating ligand very similar to D(1), but with a -CH(2)OCH(2)- bridge, exhibits only nonselective cleavage of DNA. The differences in the reactivity of these two complexes with DNA and their previously established interaction with dioxygen suggest that specific strand scission is a function of the orientation of a reactive intermediate.  相似文献   

9.
You YS  Kim D  Do Y  Oh SJ  Hong CS 《Inorganic chemistry》2004,43(22):6899-6901
A new type of one-dimensional cyanide-bridged Cu(II)--Mo(V) bimetallic assembly, [Cu(cyclam)](3)[Mo(CN)(8)](2)x5H(2)O (cyclam = 1,4,8,11-tetraazacyclotetradecane), was prepared by self-assembling Mo(CN)(8)(3)(-) and Cu(cyclam)(2+) ions in a 2:3 stoichiometric ratio. The overall molecular view is delineated as a novel rope-ladder chain structure. It displays a dominant ferromagnetic behavior within a pentanuclear Cu(3)Mo(2) unit (J(p) = 3.88 cm(-)(1)). Interunit ferromagnetic interactions (J(c) = -0.03 cm(-)(1)) through a longer magnetic pathway of Cu--Mo and weak antiferromagnetic couplings (zJ' = -0.46 cm(-)(1)) resulting from interchain interactions are obtained.  相似文献   

10.
Copper(II), zinc(II), and nickel(II) complexes with tridentate imino nitroxyl diradicals, [CuCl(bisimpy)(MeOH)](PF(6)) (1), [ZnCl(2)(bisimpy)] (2), and [NiCl(bisimpy)(H(2)O)(2)]Cl x 2H(2)O (3) (bisimpy = 2,6-bis(1'-oxyl-4',4',5',5'-tetramethyl-4',5'-dihydro-1'H-imidazol-2'-yl)pyridine), were prepared, and their magnetic properties were studied. In 1, the Cu(II) ion has a square pyramidal coordination geometry, of which the equatorial coordination sites are occupied by three nitrogen atoms from the bisimpy and a chloride ion. The coordination geometry of the Zn(II) ion in 2 can be described as a trigonal bipyramid, with two chloride ions and a bisimpy. In 3, the Ni(II) ion has a distorted octahedral coordination geometry, of which four coordination sites are coordinated by the bisimpy and chloride ion, and two water molecules occupy the remaining cis positions. Magnetic susceptibility and EPR measurements revealed that in 1 and 3 the Cu(II) and Ni(II) ions with imino nitroxyl diradicals were ferromagnetically coupled, with the coupling constants J (H = -2J(ij) summation operator S(i)S(j)) of +165(1) and 109(2) cm(-1), respectively, and the intraligand ferromagnetic interactions in 1-3 were very weak. DFT molecular orbital calculations were performed on the diradical ligand, 1, and 2 to study the spin density distribution before and after coordination to the metal ions.  相似文献   

11.
A series of linear coordination polymers, metallacycles of cadmium(II) and mercury(II) of flexible carboxylic acid ligands, RCH{3-CH(3)-,5-CH(3)-,6-(-OCH(2)CO(2)H)C(6)H(2)}(2), (when R = C(6)H(5), (H(2)L(1)); 2-NO(2)C(6)H(4)- (H(2)L(2)) and 3-NO(2)C(6)H(4)- (H(2)L(3))) are synthesized and characterized. [CdL(1) (py)(3)](n)·3nH(2)O (py = pyridine) is a linear coordination polymer, whereas [CdL(2)(py)(CH(3)OH)](2)·CH(3)OH is a dinuclear complex of cadmium with a Cd(2)O(2) type of core. The latter is obtained from reaction of cadmium(II) acetate with H(2)L(2) in methanol followed by reaction with pyridine. A similar reaction of cadmium(II) acetate with H(2)L(2) in dimethylformamide results in the formation of a cadmium metallacycle, namely [CdL(2) (py)(2)(H(2)O)](2)·H(2)O. The H(2)L(3) reacted with cadmium(II) acetate in the presence of pyridine to form a metallacycle [CdL(3)(py)(2)(H(2)O)](2)·3H(2)O. The ligand H(2)L(2) form mercury(II) metallacycle [HgL(2)(4-mepy)(2)](2) in the presence of 4-methylpyridine (4-mepy) and the ligand H(2)L(3) forms metallacycle [HgL(3)(3-mepy)(2)](2)·DMF in the presence of 3-methylpyridine (3-mepy). The potassium salts of H(2)L(1) and H(2)L(2) were found to be coordination polymers and these potassium coordination polymers were structurally characterized.  相似文献   

12.
The microwave-mediated self-assembly of [W(V)(CN)(8)](3-) with Cu(II) in the presence of pyrazole ligand resulted in the formation of three novel assemblies: Cu(II)(2)(Hpyr)(5)(H(2)O)[W(V)(CN)(8)](NO(3))·H(2)O (1), {Cu(II)(5)(Hpyr)(18)[W(V)(CN)(8)](4)}·[Cu(II)(Hpyr)(4)(H(2)O)(2)]·9H(2)O (2), and Cu(II)(4)(Hpyr)(10)(H(2)O)[W(V)(CN)(8)](2)(HCOO)(2)·4.5H(2)O (3) (Hpyr =1H-pyrazole). Single-crystal X-ray structure of 1 consists of cyanido-bridged 1-D chains of vertex-sharing squares topology. The structure of 2 reveals 2-D hybrid inorganic layer topology with large coordination spaces occupied by {Cu(Hpyr)(2)(H(2)O)(4)}(2+) ions. Compound 3 contains two types of cyanido-bridged 1-D chains of vertex-sharing squares linked together by formate ions in two directions forming hybrid inorganic-organic 3-D framework (I(1)O(2)). The magnetic measurements for 1-3 reveal a weak ferromagnetic coupling through Cu(II)-NC-W(V) bridges.  相似文献   

13.
Late-first row transition metal nitrate complexes of the tetradentate N-donor ligand cis-3,5-bis[(2-pyridinyleneamino]-trans-hydroxycyclohexane (DDOP) adopt a mono-cationic [M(DDOP)(H(2)O)(NO(3))](+) structure (M = Co, 1; Cu, 2; Zn, 3) in which the DDOP ligand occupies the equatorial plane. The complexes are essentially isostructural and isomorphous, allowing the Co(II) and Cu(II) complexes to co-crystallize in mixed-metal solid solutions with the formula [Co(x)Cu(1-x)(DDOP)(NO(3))(H(2)O)](NO(3)), where x = 0.4 (4), 0.1 (5), and 0.7 (6). For 4, structural and magnetochemical analysis indicate that the geometry of the octahedral Co(II) complex distorts to match that of the dominant Jahn-Teller distorted Cu(II) center. Magnetic susceptibility data of octahedral Co(II) are sensitive to ligand geometry distortions and have been analyzed accordingly, comparing 4 to the reference systems 1 and 2. Bond valence calculations have been used to estimate the relative stabilities of the six hydrogen bonded networks, suggesting that the stretching of the Co(II) coordination sphere 4 in is assisted by adoption of the most stable hydrogen bonded network; but that in 6 this is overcome by a higher loading of Co. This family of complexes therefore represent predictable metal-based tectons which can help probe the influence of secondary non-covalent interactions over metal coordination geometries and properties.  相似文献   

14.
Zinc metal reduction of the cobalt(III) complex [Co(1,4-bcc)](+) (1,4-bcc = 1,4-bis-carboxymethylcyclam) produces the corresponding cobalt(II) complex which crystallises as the coordination polymer {[Co(1,4-bcc)]ZnCl(2)}(n). A method has been developed for removal of the cobalt(III) ion from [Co(1,4-bcc)](+) and isolation of the free ligand as its hydrochloride salt, H(2)(1,4-bcc).4HCl. This has been used for the preparation of new metal complexes, and the syntheses and characterisation of the copper(ii), nickel(ii), zinc(ii) and chromium(iii) complexes containing the 1,4-bcc ligand are described. X-Ray crystal structures of {[Co(1,4-bcc)]ZnCl(2)}(n).2.5H(2)O, {[Cu(1,4-bcc)]CuCl(2)}(n).0.25MeOH.H(2)O and [Cu(1,4-bcc)H]ClO(4) show the complexes to have the trans(O) geometry of the 1,4-bcc ligand, while the structure of [Cr(1,4-bcc)H(0.5)](ClO(4))(1.5).EtOH exhibits the cis(O) configuration.  相似文献   

15.
Conventional reactions of the new multidentate ligand 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp, 1) with copper(II) salts lead to four novel multidimensional coordination complexes [Cu(7atp)(mal)(H(2)O)(2)]·H(2)O (2), [Cu(2)(μ-7atp)(4)(H(2)O)(2)](ClO(4))(4)·3H(2)O (3), {[Cu(7atp)(2)(μ-ox)]·3H(2)O}(n) (4) and {[Cu(7atp)(2)(μ-suc)]·2H(2)O}(n) (5), where ox(2-), mal(2-) and suc(2-) mean oxalate, malonate and succinate, respectively. In these compounds, the 7atp ligand coordinates monodentately through its atom N3, except for compound 3, which displays N3-N4 coordination mode, giving rise to all to structures with diverse topologies and dimensionality. Compound 2 is a mononuclear entity, 3 consists of dinuclear species, 4 is a zig-zag chain with oxalate as a bridging ligand and 5 is a succinate-bridged mono-dimensional system. All polynuclear metal complexes show antiferromagnetic interactions of with J values ranging from -0.12 to -49.5 cm(-1). The ligand donor capabilities have been estimated by topological analyses of the electron density (QTAIM) and electron localization function (ELF), obtained by DFT calculations. The compounds are the first structurally characterized copper(II) complexes containing the 7atp ligand.  相似文献   

16.
合成了2个含三齿Schiff碱配体和单齿N-杂环分子的多核过渡金属配合物:1个含5-氯水杨醛缩对硝基苯甲酰腙(H2L1)和吗啡啉(Mf)的镍髤配合物[Ni(L1)(Mf)](1),1个含5-氯水杨醛缩水杨酰腙(H2L2)和吡啶(Py)的铜髤配合物[Cu2(L2)2(Py)2](2),并通过元素分析、红外光谱、紫外光谱以及单晶衍射等手段进行表征。在配合物1中,中心Ni髤与酰腙配体(L12-)的酚氧、亚胺氮、去质子酰胺氧原子以及中性吗啡啉氮原子配位形成平面四方形的N2O2配位构型,相邻配合物通过分子间氢键作用构筑成一维超分子链状结构。配合物2中含有2个晶体学上独立的双核铜髤配合物,相邻配合物分子的酚氧原子分别桥联2个[Cu(L2)(Py)]基本单元,形成2个含有Cu2(μ-O)2核心的配合物。每个Cu髤原子具有五配位的NONO(O)四角锥配位构型。  相似文献   

17.
Conventional reactions of the versatile multidentate ligand 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO) with metallic(II) salts lead to three novel multidimensional complexes [Cu(HmtpO)(2)(H(2)O)(3)](ClO(4))(2)·H(2)O (1), {[Cu(HmtpO)(2)(H(2)O)(2)](ClO(4))(2)·2HmtpO}(n) (2) and {[Co(HmtpO)(H(2)O)(3)](ClO(4))(2)·2H(2)O}(n) (3). In each compound, the triazolopyrimidine ligand shows a different and unusual coordination mode, giving rise to structures with diverse topologies and dimensionality. Compound 1 is a monomeric complex, in which HmtpO shows both N3-monodentate and N1,O71-bidentate modes. 2 is a bidimensional framework with the ligand showing a N3,O71 bidentate-bridging mode. The structure of 3 consists of 1D chains, in which HmtpO displays a N1,N3,O71-tridentate-bridging mode. It should be noted that these coordination modes of the HmtpO ligand are unique in the case of compounds 2 and 3. On the other hand, the magnetic properties of the polynuclear complexes 2 and 3 have been studied showing weak ferromagnetic and antiferromagnetic behaviour, respectively.  相似文献   

18.
The synthesis and characterisation of a new bis([9]aneN3) ligand (L4) containing two [9]aneN3 macrocyclic moieties separated by a 2,6-dimethylenepyridine unit is reported. A potentiometric and 1H NMR study in aqueous solution reveals that ligand protonation occurs on the secondary amine groups and does not involve the pyridine nitrogen. The coordination properties toward Cu(II), Zn(II), Cd(II) and Pb(II) were studied by means of potentiometric and UV spectrophotometric measurements. The ligand can form mono- and binuclear complexes in aqueous solution. In the 1 : 1 complexes, the metal is sandwiched between the two [9]aneN3 moieties and the pyridine N-donor is coordinated to the metal, as actually shown by the crystal structure of the compound [ZnL4](NO3)2.CH3NO2. L4 shows a higher binding ability for Cd(II) with respect to Zn(II), probably due to a better fitting of Cd(II) ion inside the cavity generated by the two facing [9]aneN3 units. The formation of binuclear complexes is accompanied by the assembly of OH-bridged M2(OH)x (x = 1-3) clusters inside the cavity defined by the two facing [9]aneN3 units, and pyridine is not involved in metal coordination. A potentiometric and (1)H NMR study on the coordination of halogenide anions by L4 and its structural analogous L3 in which the two [9]aneN3 units are separated by a shorter quinoxaline linkage, shows that bromide is selectively recognised by L4, while chloride is selectively bound by L3. Such a behaviour is discussed in terms of dimensional matching between the spherical anions and the cavities generated by the two [9]aneN3 units of the receptors.  相似文献   

19.
Divalent and trivalent nickel complexes of 1,4,8,11-tetraazacyclotetradecane, denoted as cyclam hereafter, coordinated by methyl coenzyme M (MeSCoM(-)) and coenzyme M (HSCoM(-)) have been synthesized in the course our model studies of methyl coenzyme M reductase (MCR). The divalent nickel complexes Ni(cyclam)(RSCoM)(2) (R = Me, H) have two trans-disposed RSCoM(-) ligands at the nickel(II) center as sulfonates, and thus, the nickels have an octahedral coordination. The SCoM(2-) adduct Ni(cyclam)(SCoM) was also synthesized, in which the SCoM(2-) ligand chelates the nickel via the thiolate sulfur and a sulfonate oxygen. The trivalent MeSCoM adduct [Ni(cyclam)(MeSCoM)(2)](OTf) was synthesized by treatment of [Ni(cyclam)(NCCH(3))(2)](OTf)(3) with ((n)Bu(4)N)[MeSCoM]. A similar reaction with ((n)Bu(4)N)[HSCoM] did not afford the corresponding trivalent HSCoM(-) adduct, but rather the divalent nickel complex polymer [-Ni(II)(cyclam)(CoMSSCoM)-](n) was obtained, in which the terminal thiol of HSCoM(-) was oxidized to the disulfide (CoMSSCoM)(2-) by the Ni(III) center.  相似文献   

20.
The synthesis and characterization of the first thiosemicarbazone-lumazine (TSCLMH=the thiosemicarbazone of 6-acetyl-1,3,7-trimethyllumazine) hybrid ligand is reported. The influence of the conformation of this compound on its energy and the atomic contribution to the molecular orbitals have been theoretically investigated. Ni(II), Cu(I), Zn(II), and Cd(II) complexes of this ligand have been synthesized and characterized by elemental analysis, thermogravimetric studies, IR, 1H, 13C, and 15N NMR, and UV-vis-NIR spectroscopy, magnetic measurements, and X-ray crystallography. Four types of coordination modes for the ligand may be predicted: (a) double bidentate; (b) tetradentate; (c) tridentate; (d) bidentate. Structures of representative complexes of types a, b, and d have been determined by X-ray crystallography. In the [Cu(TSCLMH)]2(ClO4)2 complex, TSCLMH acts as a doubly bidentate bridging ligand forming a dimer with a Cu...Cu distance of 2.876 A. The geometry around the metal ion is trigonally distorted tetrahedral with a relatively long (four-atom) bridge between the metal centers instead of the shorter, mainly single atom, bridges present in other thiosemicarbazone derivatives complexes. In the [Cd(NO3)2(TSCLMH)(EtOH)] complex, the metal ion displays eight-coordinated geometry with the TSCLMH ligand acting in a tetradentate planar fashion and two nitrate anions, one monodentate and the other bidentate. The coordination polyhedron in [Cd(TSCLM)2(H2O)].MeOH.2H2O is a square pyramid with two monoanionic ligands acting as bidentate NS donors and a water molecule completing the coordination sphere. Fluorescence spectroscopic properties of TSCLMH have been studied as well as the changes in position and intensity of fluorescence bands caused by the complexation with different metal ions (Ni2+, Cu+, Zn2+, Cd2+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号