首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase-matching angle and pump energy dependence of transverse beam profiles on traveling-wave parametric generation in KTiOPO4 crystals are numerically calculated and compared with the previously measured results. It is found that the idler beam profile stretches in its walk-off direction and the signal beam profile stretches in the opposite direction as the idler walk-off angle becomes large due to the walk-off and back-conversion effects in the propagation process. It is also found that, even if walk-off does not exist, the transverse beam profile has a manifold ring shape as the pump energy is increased due to repeated conversion and back-conversion.  相似文献   

2.
We report on an optical parametric amplifier (OPA) based on two potassium titanyl phosphate (KTP) crystals in a walk-off compensating geometry. An Nd:YLF regenerative amplifier at a 1-kHz repetition rate serves as the pump source. The seed beam is delivered by a synchronously pumped frequency-stabilized optical parametric oscillator (OPO) based on periodically poled lithium niobate (PPLN). At pump intensities of about 7 GW/cm2 large amplification factors of more than 104 were achieved, resulting in pulse energies of more than 450 μJ and 350 μJ for the signal and idler pulses, respectively, at a 1-kHz repetition rate. In the saturation regime the time–bandwidth product increases from two to three times the Fourier limit, with a pulse duration of 105 ps and a bandwidth of 12.7 GHz at the highest intensities employed. Received: 2 November 2001 / Published online: 14 March 2002  相似文献   

3.
We report on a numerical analysis of the temporal and spatial beam properties of nanosecond optical parametric oscillators (OPOs). The analysis is performed for a 355-nm-pumped critically phase-matched OPO of beta-barium borate. The calculations provide detailed information on the dependence of the OPO beam quality (measured by the quality factor M 2) on pump energy. An important result is the strong increase of the M 2 value for pump energies exceeding 1–2 times the energy at threshold. Furthermore, a temporal analysis of single OPO pulses indicates that the M 2 value strongly increases during the first few nanoseconds of the OPO oscillation. This increase is understood by considering the temporal dynamics of the spatial profiles of the OPO signal beam and the depleted pump radiation. Received: 1 April 1999 / Revised version: 26 July 1999 / Published online: 20 October 1999  相似文献   

4.
We report on the reduction of the divergence and the spectral width of the output of a 355 nm pumped pulsed optical parametric oscillator (OPO) of β-barium borate (BBO). Detailed theoretical investigations indicated that type-IIphase matching in combination with double-passing the pump beam should simultaneously reduce the spectral width and the divergence of the OPO output beam. These predictions are confirmed in the experiments reported in this paper. In fact the bandwidth is reduced by more than a factor of 20 to less than 0.1 nm. Simultaneously the divergence of the OPO waves is reduced in the phase matching plane by more than a factor of 5 to 1.0 mrad. The small divergence and the reduced bandwidth allows efficient frequency doubling of the 5-ns-long visible OPO signal pulses into the UV. Doubling in a 7-mm-long BBO crystal provided conversion efficiencies of up to 35%. Received: 21 August 2000 / Revised version: 11 December 2000 / Published online: 21 March 2001  相似文献   

5.
Ward H  Taki M  Glorieux P 《Optics letters》2002,27(5):348-350
We investigate the effect of coupling between diffraction and walk-off on secondary instabilities in nondegenerate optical parametric oscillators. We show that traveling waves that propagate in the walk-off direction, which are generated at the onset of absolute instability, experience Eckhaus and zigzag phase instabilities. Each of these secondary instabilities splits into absolute and convective instabilities that modify the Eckhaus and zigzag instability boundaries. As a consequence, the stability domain of modulated traveling waves is enlarged and may coexist with uniform steady states. The predictions are consistent with the numerical solutions of the optical parametric oscillator model.  相似文献   

6.
We report on a femtosecond optical parametric oscillator (OPO) with a repetition rate of 1 GHz, which is 12 times that of the pump laser used. We also introduce a novel method for operating an OPO with a high harmonic repetition rate which is not determined by the cavity length of the OPO, but rather the cavity length difference between the OPO and its pump laser. Operation of an OPO at 4-times the harmonic repetition rate has been carried out to show the feasibility of this method. The new approach paves the way for constructing a femtosecond OPO working at repetition rates of 10 GHz, or higher, when the pump laser used has a relatively low repetition rate. Received: 26 October 2001 / Revised version: 11 Januar 2002 / Published online: 14 March 2002  相似文献   

7.
This paper reports on an experimental investigation of the spatial beam quality of a pulsed nanosecond optical parametric oscillator (OPO). The OPO is a 355 nm pumped type-I BBO-OPO. The spatial quality of the OPO output is characterized by the M2-parameter in dependence of other experimental parameters such as resonator length, pump-beam diameter, pump-pulse duration and pump energy. The results obtained indicate, that an appropriate choice of these parameters substantially improves the spatial beam quality of the OPO output. Received: 19 November 2002 / Revised version: 3 February 2003 / Published online: 5 May 2003 RID="*" ID="*"Corresponding author. Fax: +49-631/205-3906, E-mail: anstett@rhrk.uni-kl.de  相似文献   

8.
A 2.2-W continuous-wave, continuously tunable, single-frequency OPO has been developed in the 3.0–3.8 μm wavelength range for the detection of molecular trace gasses. The oscillation threshold, output power and stability of the single resonant OPO were improved by optimizing pump beam waist and OPO cavity length. Both air-spaced and solid etalons were tested to frequency stabilize and tune the OPO, from which the solid etalon gave a better performance. Temperature oscillations in the PPLN crystal caused oscillations in the idler wavelength of less than 200 MHz over 300 s; the short-term stability was less than 3 MHz over 1 s. The high laser power, in combination with photoacoustic spectroscopy, achieved a detection limit of 10 parts-per-trillion for ethane in nitrogen. Received: 9 April 2002 / Revised version: 14 June 2002 / Published online: 2 September 2002 RID="*" ID="*"Corresponding author. Fax:+31-24/3653311, E-Mail: maartenh@sci.kun.nl  相似文献   

9.
00 pump field. The corresponding differential equations for the time evolution of the self-consistent mode amplitudes are derived for typical cavity geometries including the propagation integrals within the crystal. We discuss the new physical effects introduced by these couplings in some typical cases. This includes a change of the OPO threshold and stable simultaneous oscillation of several mode pairs with fixed relative phases as well as oscillating self-pulsing type solutions. Received: 12 January 1998/Accepted: 11 February 1998  相似文献   

10.
Second harmonic (SH) power of the type-II phase matching in KTiOPO4 (KTP) is calculated for the fundamental beams of TEM00 mode within the near field approximation (parallel Gaussian beam) taking the beam walk-off effect among the two fundamental and the SH beams into account. The slit intensity and the total SH power are calculated as functions of the beam radius and the crystal length. Two approximations are made for the SH power calculation at tight beam focusing condition. The measurements of the SH power in KTP are carried out for three crystals of 6, 3, and 1.5 mm thickness. The effective nonlinear coefficient for Nd: YAG incident radiation is estimated to be 4.3 pm/V with 10% uncertainty, taking the enhancement factor due to the multimode structure of the laser beam into account.  相似文献   

11.
A novel instrument, based on cavity-ringdown spectroscopy (CRDS), has been developed for trace gas detection. The new instrument utilizes a widely tunable optical parametric oscillator (OPO), which incorporates a zinc–germanium–phosphide (ZGP) crystal that is pumped at 2.8 μm by a 25-Hz Er,Cr:YSGG laser. The resultant mid-IR beam profile is nearly Gaussian, with energies exceeding 200 μJ/pulse between 6 and 8 μm, corresponding to a quantum conversion efficiency of approximately 35%. Vapor-phase mid-infrared spectra of common explosives (TNT, TATP, RDX, PETN and Tetryl) were acquired using the CRDS technique. Parts-per-billion concentration levels were readily detected with no sample preconcentration. A collection/flash-heating sequence was implemented in order to enhance detection limits for ambient air sampling. Detection limits as low as 75 ppt for TNT are expected, with similar concentration levels for the other explosives. Received: 1 April 2002 / Revised version: 13 June 2002 / Published online: 12 September 2002 RID="*" ID="*"Corresponding author. Fax: +1-408/524-0551, E-mail: mtodd@picarro.com  相似文献   

12.
We report the development and application of pulsed optical parametric generator (OPG) and optical parametric oscillator (OPO) systems that are injection seeded with near-infrared distributed feedback diode lasers. The OPG is injection seeded at the idler wavelength without the use of a resonant cavity. Two counter-rotating, beta-barium-borate (β-BBO) crystals are used in the OPG. These crystals are pumped by the third harmonic, 355-nm output of an injection-seeded Nd:YAG laser. An OPO version of the system has also been developed by placing two flat mirrors around the two β-BBO crystals to form a feedback cavity at the signal wavelength. The OPO cavity length is not actively controlled. The output signal beam from the OPG or OPO is amplified using an optical parametric amplifier (OPA) stage with four β-BBO crystals. The frequency bandwidths of the signal and idler laser radiation from OPG/OPA and OPO/OPA systems have been determined to be slightly greater than 200 MHz. The temporal pulses from each system are smooth and near-Gaussian. High-resolution optical absorption measurements of acetylene (C2H2) were performed as another check of the frequency spectrum of the idler beam. The frequency-doubled signal output of the OPO/OPA system was used to perform high-resolution, single-photon, laser-induced fluorescence (LIF) spectroscopic studies of the (0,0) vibrational band of the A 2Σ+X 2Π electronic transition of nitric oxide (NO) at low pressure. Excellent agreement was obtained between the theory and the experiment. The signal output of the OPG/OPA system was also used for sub-Doppler, two-photon LIF spectroscopic studies of the same vibration–rotation manifold of NO.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

13.
We propose enhanced frequency-doubling inside an external ring-cavity using type II nonlinear crystal. A KTP type II twin-crystal device is implemented for compensation of both walk-off and phase-shift between ordinary and extraordinary fundamental waves. Starting from an 850 mW diode-pumped actively mode-locked Nd:YAG laser at 1.064 μm with 100 MHz repetition rate and 25 ps pulse duration, we performed 54% harmonic conversion efficiency in the green. Received: 31 August 1998 / Revised version: 10 February 1999 / Published online: 19 May 1999  相似文献   

14.
We report a study of transverse laser cooling on a metastable helium beam using spectrally broadened diode lasers (“white light") to increase its flux. For this purpose, beam profile and atomic flux versus laser power and other parameters have been characterized. We have performed experiments to compare this technique with other transverse cooling methods using monochromatic light. Best results are obtained with a “ziz-zag" configuration using “white light". Received 21 December 1998 and Received in final form 27 May 1999  相似文献   

15.
We study the nature of the instability of the homogeneous steady states of the subcritical real Ginzburg-Landau equation in the presence of group velocity. The shift of the absolute instability threshold of the trivial steady state, induced by the destabilizing cubic nonlinearities, is confirmed by the numerical analysis of the evolution of its perturbations. It is also shown that the dynamics of these perturbations is such that finite size effects may suppress the transition from convective to absolute instability. Finally, we analyze the instability of the subcritical middle branch of steady states, and show, analytically and numerically, that this branch may be convectively unstable for sufficiently high values of the group velocity. Received 17 December 1998  相似文献   

16.
Single axial mode operation (<200 MHz optical bandwidth) of a high repetition rate periodically poled lithium niobate optical parametric oscillator (OPO) has been obtained at signal wavelengths between 1.46 μm and 1.64 μm. OPO signal slope efficiencies of 35% have been measured for repetition rates of 5–20 kHz. Single mode operation required spectral narrowing of both the pump laser and the OPO. A simple technique of prelase Q-switching was implemented to reduce the optical bandwidth of the cw diode-pumped Nd:YAG pump laser to <1 GHz. A single intracavity étalon was then sufficient to ensure single frequency oscillation of the OPO signal. The OPO output was stable with a smooth spatial profile and an M 2 value of 1.3. Received: 29 September 1999 / Published online: 27 January 2000  相似文献   

17.
We present a detailed analysis of transverse effects and pattern formation in bistable optical elements. The system we investigate consists of a Fabry-Perot resonator for the optical feedback element with a nematic liquid-crystal cell used as an optically nonlinear intracavity medium. On illumination with a cw-laser beam, the system causes the beam to break up into several individual spots, passing through several transitions before finally reaching a stationary state. We devise a theoretical model which is used as the basis for numerical simulations of the system. The simulation results are in good agreement with experiment. Finally, we characterize the principal instability of the system using a linear stability analysis of the theoretical model.  相似文献   

18.
The modulational instability of broad optical beams in two-photon photorefractive (PR) photovoltaic materials under open circuit conditions has been investigated. Under linear stability framework, the one dimensional modulational instability growth rate has been estimated by considering the space charge field. Gain of the instability is shown to exist only when the photovoltaic fields orients in the same direction with respect to the optical c-axis of the medium. It is found that the behavior of the gain spectrum is different in low and high power regions. We have found by numerical simulations that the evolution of the soliton induced by the modulational instability at low photovoltaic field show the dynamical behaviors similar to those of the localized beam as the initial profile. However, it has been shown that increasing photovoltaic fields produce traveling, breathing, and mutually interacting solitons.  相似文献   

19.
The paper reports on an experimental investigation and numerical analysis of noncritically and critically phasematched LiB3O5 (LBO) optical parametric oscillators (OPOs) synchronously pumped by the third harmonic of a cw diode-pumped mode-locked Nd:YVO4 oscillator–amplifier system. The laser system generates 9.0 W of 355-nm mode-locked radiation with a pulse duration of 7.5 ps and a repetition rate of 84 MHz. The LBO OPO, synchronously pumped by the 355-nm pulses, generates a signal wave tunable in the blue spectral range 457–479 nm. With a power of up to 5.0 W at 462 nm and 1.7 W at 1535 nm the conversion efficiency is 74%. The OPO is characterized experimentally by measuring the output power (and its dependence on the pump power, the transmission of the output coupler and the resonator length) and the pulse properties (such as pulse duration and spectral width). Also the beam quality of the resonant and nonresonant waves is investigated. The measured results are compared with the predictions of a numerical analysis for Gaussian laser and OPO beams. In addition to the blue-signal output visible-red 629-nm radiation is generated by sum-frequency mixing of the 1.535-μm infrared idler wave with the residual 1.064-μm laser radiation. A power of 1.25 W of 1.535-μm idler radiation and 5.7 W of 1.064-μm laser light generated a red 629-nm output power of 2.25 W. Received: 2 February 2000 / Revised version: 28 July 2000 / Published online: 22 November 2000  相似文献   

20.
Theoretical investigations of dynamical behavior in optical parametric oscillators (OPO) have generally assumed that the cavity detunings of the interacting fields are controllable parameters. However, OPOs are known to experience mode hops, where the system jumps to the mode of lowest cavity detuning. We note that this phenomenon significantly limits the range of accessible detunings and thus may prevent instabilities predicted to occur above a minimum detuning from being evidenced experimentally. As a simple example among a number of instability mechanisms possibly affected by this limitation, we discuss the Hopf bifurcation leading to periodic behavior in the monomode mean-field model of a triply resonant OPO and show that it probably can be observed only in very specific setups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号