首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Submicron-size Bi-based glass powders were directly prepared by high-temperature spray pyrolysis. The mean sizes of the Bi-based glass powders were changed from 0.48 to 0.91 μm by changing the concentrations of spray solution. The dielectric layers formed from the Bi-based glass powders with fine size had higher transparencies than those of the dielectric layers formed from the Bi-based glass powders with large size. The transparencies of the dielectric layers formed from the glass powders obtained by spray pyrolysis from spray solution of 0.05 M decreased from 94 to 67% when the firing temperatures of the dielectric layers were changed from 580 to 500 °C. At the same firing temperatures, the transparencies of the dielectric layers formed from the glass powders obtained by spray pyrolysis from spray solution of 0.5 M decreased from 83 to 28%. The dielectric layers formed from the glass powders with fine size had dense and homogeneous structures even at low firing temperatures. PACS 42.70.Ce; 85.60.Pg; 71.55.Jv  相似文献   

2.
Tin sulphide (SnS) thin films were deposited on glass substrate at different substrate temperature (Ts = 325 °C, 350 °C and 375 °C) by pyrolytic decomposition using stannous chloride and thiourea as precursor solutions. Also, indium-doped SnS thin films were prepared by using InCl3 as dopant source. The dopant concentration [In/Sn] was varied from 2 at% to 6 at%. The XRD analysis revealed that the films were polycrystalline in nature having orthorhombic crystal structure with a preferred grain orientation along (1 1 1) plane. Due to In doping, the orientation of the grains in the (1 1 1) plane was found to be deteriorated. Atomic force microscopy (AFM) measurements revealed that the surface roughness of the films decreased due to indium doping. The optical properties were investigated by measuring the transmittance characteristics which were used to find the optical band gap energy, refractive index and extinction coefficient. The energy band gap value was decreased from 1.60 to 1.43 eV with increasing In concentration. The photoluminescence (PL) measurements of thin films showed strong emission band centered at 760 nm. Using Hall Effect measurements electrical resistivity, carrier concentration and Hall mobility have been determined.  相似文献   

3.
The morphology of ceria nanoparticles prepared by spray pyrolysis (SP) from cerium (III) acetate and cerium (III) nitrate hydrate precursors were characterized by transmission electron microscopy. It was observed that using the nitrate as a precursor, particles containing multiple pores in the core can be prepared preferentially as opposed to the acetate precursor, when particles with predominantly a single pore were obtained. It was also found that the number of pores in the particles strongly correlates with the particle diameter. It is shown that predominantly multiporous particles for possible catalytic applications may be obtained by selecting particles with diameters between 50 and 100 nm and using cerium nitrate hydrate as a precursor. A mechanism leading to formation of multiporous ceria nanoparticles in the case of using the nitrate precursor in the SP process is discussed based on thermogravimetric analysis (TGA) data.  相似文献   

4.
In this study, we present a simple method to improve the electrochromic properties of a nickel oxide thin film. The method involves a three-step process—(a) conducting indium tin oxide (ITO) nano-particles were first sprayed onto a conducting substrate to form a porous nano-structured ITO layer, (b) nickel oxide film was then deposited onto the nano-structured ITO layer by a spray pyrolysis technique, and (c) the substrate, ITO nano-particles layer and nickel oxide film were annealed at high temperature of 300 °C to improve adhesion of these three layers. The microstructure of the resulting electrochromic cell was investigated using scanning electron microscopy. It is evident that the nickel oxide film covers the surface of the ITO nano-particle layer and forms a nano-structured nickel oxide (NSNO) film. The switching time and contrast were characterized by Autolab PGSTAT12 potentiostat and Jasco V-570 spectrophotometer. The results suggest that the transmittance contrast and switching time of NSNO are slightly superior to those of a conventional nickel oxide (CNO) film. However, the cycling durability of NSNO can be much better than that of CNO.  相似文献   

5.
Chemical spray pyrolysis was applied to grow ZnO nanorod arrays from zinc chloride solutions with pH=2 and 5 on glass/ITO substrate at 480 and 550 °C. The obtained structures were characterized by their morphological, electrical and PL properties. According to SEM, deposition of acidic solutions retards coalescence of the growing crystals. The charge carrier density in ZnO nanorods was determined from the C-V characteristics of ZnO/Hg Schottky barrier. Carrier densities ∼1015 cm−3 and slightly above 1016 cm−3 were recorded for ZnO deposited at 550 and 480 °C, respectively. According to PL studies, intense UV-emission is characteristic of ZnO independent of growth temperature, the concentration of oxygen vacancy related defects is lower in ZnO nanorods deposited at 550 °C. Solution pH has no influence on carrier density and PL properties.  相似文献   

6.
Cobalt oxide thin films were prepared by a facile spray pyrolysis technique, using a perfume atomizer with an aqueous solution of hydrated cobalt chloride salt with a molar concentration of 0.025?M as a source of cobalt. The films were deposited onto glass substrates at temperature of 350?°C. The structural, morphological, and electrochromic properties of the obtained films were studied. It was found from X-ray diffraction analysis that the films were polycrystalline in nature with spinel-type cubic structure and preferred orientation along [111] direction. The Scanning Electron Microscopy images revealed a porous structure with the average grain size around 200?nm. The cyclic voltammetry measurements revealed that Cobalt oxide thin film is an anodically coloring electrochromic material with a transmittance variation in the visible range of 31%, and a fast response time (about 2?seconds) and a good cycling stability. These electrochromic performances make cobalt oxide thin film an attractive material for using as an anodic electrochromic material in smart windows devices. The photoluminescence spectra exhibited a strong emission in the visible region confirming the good crystallinity properties of Co3O4 thin films.  相似文献   

7.
In this work, highly oriented pure and Tin-doped Titanium dioxide (Sn-doped TiO2) with porous nature photoelectrodes were deposited on ITO glass plates using spray pyrolysis technique. The XRD pattern revealed the formation of anatase TiO2 with the maximum intensity of (101) plane while doping 6 at% of Sn. The morphological studies depicted the porous nature with the uniform arrangement of small-sized grains. The presence of tin confirmed with the EDX spectra. The size of particles of 13 nm was observed from High Resolution Transmission Electron Microscopy (HR-TEM) analysis. The average transmittance was about 85% for the doped photoelectrode and was observed for the photoelectrode deposited with 6 at% of tin, with decreased energy band gap. The PL study showed the emission peak at 391 nm. The maximum carrier concentration and Hall mobility was observed for the photoelectrode deposited with 6 at% of tin. With these studies, the DSSCs were prepared separately with the dye extracted from Hibiscus Rosasinesis and Hibiscus Surttasinesis and their efficiency was maximum for the DSSC prepared with 6 at% of tin.  相似文献   

8.
We have prepared thin film cathode materials and thin film electrolytes at temperatures ranging from 400°C to 600°C by a spray pyrolysis technique. The sols used to prepare the films are made from simple inorganic salts and non toxic, inexpensive diols. The sols can be sprayed in an air atmosphere to prepare films of the desired crystalline materials. Paper presented at the 1st Euroconverence on Solid State Ionics, Zakynthos, Greece, 11–18 Sept. 1994  相似文献   

9.
Preparation of transparent and conducting indium doped CdO thin films by spray pyrolysis on glass substrate is reported for various concentration of indium (2-8 wt%) in the spray solution. The electrical, optical and structural properties of indium doped CdO films were investigated using different techniques such as Hall measurement, optical transmission, X-ray diffraction and scanning electron microscope. X-ray analysis shows that the undoped CdO films are preferentially orientated along (2 0 0) crystallographic direction. Increase of indium doping concentration increases the films packing density and reorient the crystallites along (1 1 1) plane. A minimum resistivity of 4.843×10−4 Ω cm and carrier concentration of 3.73×1020 cm−3 with high transmittance in the range 300-1100 nm were achieved for 6 wt% indium doping. The band gap value increases with doping concentration and reaches a maximum of 2.72 eV for 6 wt% indium doping from 2.36 eV of that of undoped film. The minimum resistivity achieved in the present study is found to be the lowest among the reported values for In-doped CdO films prepared by spray pyrolysis method.  相似文献   

10.
Lithium-doped zinc oxide films were synthesized by spray pyrolysis technique, and their structural and optical properties were characterized by X-ray diffraction, transmission electron microscope, atomic force microscope, and photoluminescence spectroscopy. The effect of doping on the photoluminescence properties was investigated at room temperature (300 K). Polycrystalline nature of the films was confirmed from X-ray diffraction and electron microscopic studies. A two-dimensional fringe moiré pattern with spacing of 1.2 nm was observed for the doped thin film. Lithium doping has been found to increase the roughness of the surface, thus making the film more passivated. Lithium was found to play a key role in the excitonic as well as visible luminescence of ZnO.  相似文献   

11.
The effects of the precursor types of Ni and Fe components on the morphology, mean size, and magnetic property of NiFe2O4 powders prepared by spray pyrolysis from the spray solution, with citric acid were studied. The precursor powders with hollow and thin wall structure turned to the nano-sized NiFe2O4 powders after post-treatment at a temperature of 800 °C. The nickel ferrite powders obtained from the spray solution with ferric chloride had nanometer sizes and narrow size distributions irrespective of the types of nickel precursor. The nickel ferrite powders obtained from the spray solution with ferric nitrate and nickel chloride also had nanometer size and narrow size distribution. The saturation magnetizations of the NiFe2O4 powders changed from 37 to 42 emu/g according to the types of the Fe and Ni precursors. The saturation magnetizations of the NiFe2O4 powders increased with increasing the Brunauer-Emmett-Teller (BET) surface areas of the powders.  相似文献   

12.
Iron oxide thin films were prepared by spray pyrolysis technique onto glass substrates from iron chloride solution. They were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and (UV-vis) spectroscopy. The films deposited at Ts ≤ 450 °C were amorphous; while those produced at Tsub = 500 °C were polycrystalline α-Fe2O3 with a preferential orientation along the (1 0 4) direction. By observing scanning electron microscopy (SEM), it was seen that iron oxide films were relatively homogeneous uniform and had a good adherence to the glass substrates. The grain size was found (by RX) between 19 and 25 nm. The composition of these films was examined by X-ray photoelectron spectroscopy and electron probe microanalysis (EPMA). These films exhibited also a transmittance value about 80% in the visible and infrared range. The cyclic voltammetry study showed that the films of Fe2O3 deposited on ITO pre-coated glass substrates were capable of charge insertion/extraction when immersed in an electrolyte of propylene carbonate (PC) with 0.5 M LiCLO4.  相似文献   

13.
Polycrystalline MgB2 films of different thickness have been prepared by employing spray pyrolysis technique on MgO (1 0 0) substrate. The MgB2 and other phases have been confirmed using X-ray diffraction technique and no trace of impurities phases have been found. The resistivity behavior shows that the superconducting transition temperature lies in the range of 37–39 K with narrow transition width. The transport critical current density vary with films thickness and achieved highest value ~1.2 × 106 A/cm2 at 20 K for 2.0 μm thick film and its values increase as thickness increases.  相似文献   

14.
A series of Cr-doped ZnO micro-rod arrays were fabricated by a spray pyrolysis method. X-ray diffraction patterns of the samples showed that the undoped and Cr-doped ZnO microrods exhibit hexagonal crystal structure. Surface morphology analysis of the samples has revealed that pure ZnO sample has a hexagonal microrod morphology. From X-ray photoelectron spectroscopy studies, the Cr 2p3/2 binding energy is found to be 577.3 eV indicating that the electron binding energy of the Cr in ZnO is almost the same as the binding energy of Cr3+ states in Cr2O3. The optical band gap Eg decreases slightly from 3.26 to 3.15 eV with the increase of actual Cr molar fraction from x = 0.00 to 0.046 in ZnO. Photoluminescence studies at 10 K show that the incorporation of chromium leads to a relative increase of deep level band intensity. It was also observed that Cr doped samples clearly showed ferromagnetic behavior; however, 2.5 at.% Cr doped ZnO showed remnant magnetization higher than that of 1.1 at.% and 4.6 at.% Cr doped samples, while 4.6 at.% Cr doped ZnO samples had a coercive field higher than the other dopings.  相似文献   

15.
Thin films of molybdenum trioxide (MoO3) were deposited on common glass using the chemical spray pyrolysis technique. A (NH4)6Mo7O244H20 solution 0.1 M was used as the precursor one. The influence of substrate temperature on the crystallographic structure, surface morphology and electrical behavior of MoO3 thin films was studied. MoO3 can exist in two crystalline forms, the thermodynamically stable orthorhombic α-MoO3 and the metastable monoclinic β-MoO3 phase. XRD-spectra showed a growth of α-MoO3 phase percentage as substrate temperature increases from 420 K up to 670 K. Films deposited in the 500–600 K range have a clearly porous surface structure of nanometer order as can be seen in SEM images. Changes up to six magnitude orders were observed in MoO3 thin films electrical resistance when films temperature varied from 100 K up to 500 K. The sensing property of these MoO3 films was also studied. The sensitivity was investigated in the temperature range 160 and 360 K for H2O and CO gases, respectively. Both of them are of reducing nature. In all studied cases sensitivity decreases slowly as film temperature is raised. At room temperature the sensitivity changes from 12 up to 75% depending on substrate temperature. The sensitivity for CO gas was found to be lower than that of H2O.  相似文献   

16.
Molybdenum-doped cadmium oxide films were prepared by a spray pyrolysis technique at a substrate temperature of 300?°C. The effect of doping on structural, electrical and optical properties were studied. X-ray analysis shows that the undoped CdO films are preferentially oriented along the (111) crystallographic direction. Molybdenum doping concentration increases the films?? packing density and reorients the crystallites along the (200) plane. A?minimum resistivity of 4.68×10?4????cm with a maximum mobility of 75?cm2?V?1?s?1 is achieved when the CdO film is doped with 0.5?wt.% Mo. The band-gap value is found to increase with doping and reaches a maximum of 2.56?eV for 0.75?wt.% as compared to undoped films of 2.2?eV.  相似文献   

17.
High-Tc superconducting films of Bi-Sr-Ca-Cu-O have been synthesized by spray pyrolysis of nitrate precursors onto yttria stabilized zirconia (YSZ), followed by rapid annealing at 840°C in air/oxygen. The films are preferentially oriented with c-axis parallel to the plane of the substrate surface. The diffraction patterns of the films correspond to a mixed phase orthorhombic structure, with different c-values of 24.49 Å, 30.78 Å and 37.25 Å. These films exhibit superconductivity at 91 K and zero resistance at 77 K.  相似文献   

18.
A series of CdxZn1−xS thin films have been deposited on glass substrates using spray pyrolysis technique. The crystallinity and microstructure of CdxZn1−xS thin films have been investigated by X-ray diffraction (XRD). Based on the results of Hall measurements, the films obtained were an n-type semiconductor. The X-ray data analysis of CdxZn1−xS thin films showed that the grain size of the CdxZn1−xS increased with increase in Cd composition. It is observed that the band gap increases as the Cd composition decreases. The results also showed a blue shift of absorption edge of optical transmission spectra is increases as Zn ratio increases. The effects of Cd composition on the structural and optical properties of CdxZn1−xS thin films were related to their grain size, stress and carrier concentration.  相似文献   

19.
《Current Applied Physics》2019,19(10):1136-1144
Mg, Co doped and (Mg, Co) co-doped CdS thin films were prepared using chemical spray pyrolysis method. It is observed from the X-ray diffraction study that the deposited film exhibit cubic phase of CdS with preferred orientation along the (111) plane and incorporation of Mg and Co has been confirmed form energy dispersive analysis and XPS analysis as well. The doped and codoped CdS thin films exhibit 1LO and 2LO vibrations as confirmed by Raman spectrum. The core level XPS spectra ensures the incorporation of doping elements precisely. The morphological variations due to the incorporation of Co and Mg in CdS thin films have been observed by FE-SEM. The particle sizes and crystalline nature have been revealed from HRTEM images and corresponding SAED patterns. The co-doped CdS thin films show a significant shift blue in absorption spectrum. Improved magnetic properties have been observed for the co-doped CdS thin films.  相似文献   

20.
NiO/Y2O3-stabilized ZrO2 (YSZ)/Y-doped BaZrO3 (BZY) triple-phase composite powders were prepared by spray pyrolysis and evaluated for Ni/YSZ/BZY cermet anodes, which are considered effective for dry CH4 operation in solid oxide fuel cells. The structure of the particles in these powders was fine crystal fragments, and the individual material phases were clearly separated and highly dispersed within the particles. The Ni/YSZ/BZY cermet anodes fabricated with these composite powders maintained a fine electrode microstructure equivalent to that in a simple Ni/YSZ cermet anode manufactured using a composite powder prepared by spray pyrolysis. Furthermore, the addition of BZY improved the anode performance in humidified H2 and dry CH4 operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号