首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pure ZnO and Ga (3 % w/w) and Ag (3 % w/w)-doped ZnO nanowires (NWs) have been grown by use of the hot-walled pulse laser deposition technique. The doping characteristics of Ga and Ag in ZnO NWs were analyzed by use of photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS) and the results were compared with those for pure ZnO NWs. We also fabricated gas sensors by use of pure ZnO and Ga and Ag-doped ZnO NWs. Among the NW sensors, the Ag-doped NW sensor was most sensitive. We synthesized the NWs on sapphire substrates under different conditions, for example temperature, time, gas flow, and distance between target and substrate. The diameter and length of NWs were <100 nm and several microns, respectively. To analyze the effect of Ag doping on ZnO NWs, we investigated the near band edge emission by use of low-temperature PL and XPS. Significant changes in resistance and sensitivity were observed. When the sensors were used at 300 °C for detection of 1 ppm ethanol vapor, the sensitivity of the pure ZnO and the Ga and Ag-doped ZnO NW gas sensors was 97, 48, and 203 %, respectively.  相似文献   

2.
Ag-doped ZnO nanoparticles (Zn1?xAgxO; where x = 0.00–0.05) were synthesized by chemical precipitation method. The synthesized products were characterized by X-ray diffraction, scanning electron microscope (SEM), transmission electron microscope (TEM) and UV–Vis spectrometer. The SEM and TEM micrographs revealed the agglomerated spherical-like morphology and the measurements show that the size of crystallites is in the range of 10–40 nm. Optical measurements indicated a red shift in the absorption band edge after Ag doping. The band gap values of as prepared undoped and doped with silver samples were found to decrease with increase in temperature from 300 to 800 °C. Photocatalytic activities of ZnO and Ag doped ZnO were evaluated by irradiating the sample solution to ultraviolet light by taking methylene blue as organic dye. The experiment demonstrated that the photo-degradation efficiency of 1 mol% Ag-doped ZnO was significantly higher than that of undoped and 2–5 mol% Ag doped ZnO under ultraviolet light irradiation.  相似文献   

3.
Pure and Ag-doped zinc oxide sol–gel thin films were prepared by spin-coating process. Pure and Ag–ZnO films, containing 2–8% Ag, were annealed at 500?°C for 2?h. All thin films were prepared and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and UV–visible spectroscopy. X-ray diffraction studies show the polycrystalline nature with hexagonal wurtzite structure of ZnO and Ag:ZnO thin films. The crystallite size of the prepared samples reduced with increasing Ag doping concentrations. AFM and SEM results indicated that the average crystallite size decreased as Ag doping concentration increased. The transmittance spectra were then recorded at wavelengths ranging from 300 to 1000?nm. The films produced yielded high transmission at visible regions. The optical band gap energy of spin-coated films also decreased as Ag doping concentration increased. In particular, their optical band gap energies were 3.75, 3.55, 3.4, 3.3, and 3.23?eV at 0%, 2%, 4%, 6%, and 8%, respectively. Antibacterial activity of pure and Ag-doped zinc oxide against Escherichia coli and Staphylococcus aureus was evaluated by international recognized test (JIS Z 2801). The results showed that pure and Ag-doped ZnO thin film has an antibacterial inhibition zone against E. coli and S. aureus. Gram-positive bacteria seemed to be more resistant to pure and Ag-doped ZnO thin film than gram-negative bacteria. The test shows incrementally increasing in antibacterial activity of the thin films when dopant ratio increased under UV light.  相似文献   

4.
A series of spinel compounds with composition CuFe0.5(Sn(1−x)Tix)1.5S4 (0≤x≤1) is analysed by X-ray diffraction, measurements of magnetic susceptibilities and 57Fe Mössbauer spectroscopy. All samples show a temperature-dependent equilibrium between an electronic low spin 3d(t2g)6(eg)0 and a high spin 3d(t2g)4(eg)2 state of the Fe(II) ions. The spin crossover is of the continuous type and extends over several hundred degrees in all samples. The Sn/Ti ratio influences the thermal equilibrium between the two spin states. Substitution of Sn(IV) by the smaller Ti(IV) ions leads to a more compact crystal lattice, which, in contrast to many metal-organic Fe(II) complexes, does not stabilise the low spin state, but increases the residual high spin fraction for T→0 K. The role played by antiferromagnetic spin coupling in the stabilisation of the high spin state is discussed. The results are compared with model calculations treating the effect of magnetic interactions on spin state equilibria.  相似文献   

5.
6.
Polycrystalline samples of AgCuF3, isostructural with NaCuF3, were synthesized by solid state reaction and characterized by powder X-ray diffraction. The magnetic properties of AgCuF3 and NaCuF3 were examined by measuring their magnetic susceptibilities and evaluating their spin exchange interactions. The three-dimensional CuF3 network of corner-sharing CuF6 octahedra present in AgCuF3 and NaCuF3 shows a cooperative Jahn–Teller distortion such that their magnetic susceptibilities above 50 K are well described by an S = 1/2 Heisenberg uniform antiferromagnetic chain model with average spin exchange of J/kB  ?300 and ?180 K, respectively. The relative strengths of these interactions are well reproduced by spin dimer analysis based on tight-binding calculations, but not by mapping analysis based on first principles density functional calculations.  相似文献   

7.
Plate-like stoichiometric crystals of Ag-doped LiCu2O2 have been grown by slowly cooling Li2CO3·4(1 – x)CuO·4xAgNO3 (0 ≤ x ≤ 0.5) melts. X-ray single crystal diffraction has shown that the crystals are isostructural with LiCu2O2 and contain around 5 at % Ag (relative to the Cu atoms). The addition of silver to lithium cuprate crystals significantly increases their electrical conductivity but has little effect on the temperature behavior of their magnetic moment. The possible substitution mechanism is determined which supports Ag+ ↔ Cu+, rather than Ag+ ↔ Li+ in the Ag-doped LiCu2O2 crystals.  相似文献   

8.
The electronic and optical properties of pure and Ag-doped anatase TiO2 have been calculated by spin-polarized density functional theory. Ag-doped TiO2 with different Ag doping concentrations ranging from 2.08 to 8.33 % was investigated, and the electronic and optical properties evaluated. Substitutional Ag doped at Ti sites introduced Ag 4d states just above the valence-band maximum, which may help in shifting visible-light excited electrons to the conduction band. Our results show that increasing the doping concentration will enhance visible-light absorption up to Ag doping concentration of 6.25 %; however, further increase of the doping concentration leads to a decrease in visible-light absorption. These results indicate the possibility of tailoring the band gap and optical absorption of TiO2 doped with Ag by varying the doping concentration. The enhanced visible-light absorption for Ag-doped TiO2 with doping concentration of 6.25 % may be due to the existence of widely distributed Ag 4d states above the valence-band maximum and the optimal doping concentration. Ag doping shifted the absorption edge of TiO2 towards visible light, consistent with recent experimental results. Our calculation results provide a reasonable explanation for the experimental findings.  相似文献   

9.
The intersystem crossing decay constants from the 3B2u state into the ground state of anthracene-d10 in a phenazine crystal have been determined by magnetic resonance techniques at 1.5°K both at high magnetic field and, by a parameterization procedure, at zero magnetic field. A comparison of the anthracene-d10 zero-field results with those for anthracene-h10 show the effects of deuterium substitution to be largest for the in-plane spin levels of the anthracene triplet state.  相似文献   

10.
Electrical and optical properties of the ZnO film prepared by sol-gel dip coating were investigated and ZnO film was deposited onto p-type silicon to obtain Ag/ZnO/p-Si heterojunction diode. Two dimensional atomic force microscopy images indicate that the ZnO film is formed from the fibers consisted from nanoparticles with grain size of 250-350 nm. The electrical conductivity mechanism of the ZnO film was varied from extrinsic to intrinsic conductivity. The calculated optical band gap of the ZnO film was found to be 3.22 eV. The Ag/ZnO/p-Si diode exhibit a non-linear behavior with ideality factor of n = 4.17 and barrier height of ?B = 0.79 eV. The electrical properties of the Ag/ZnO/p-Si diode were investigated by current-voltage, capacitance-voltage-frequency and conductance-voltage-frequency measurements.  相似文献   

11.
Potential energy curves for the ground and some low energy excited states of a number of complexes with a 3d 5 electronic configuration have been computed from INDO type SCF MO calculations. The results agree extremely well with the known ground states of the complex ions MnF 6 4? , FeF 6 3? , CoF 6 2? , and Fe(CN) 6 3? , in particular the crossover from high to low spin being obtained for changes in both central metal ion oxidation state and ligand. The calculated contraction in metal ligand distance on passing from the high spin to the low spin state is ~ 0.05 Å for each complex in very good agreement with the value indicated by pressure dependent magnetic measurements. Computed electronic transition energies involving bothd-d type and charge-transfer excitations compare favourably with observed spectroscopic values.  相似文献   

12.
何琼平  左永  许婷婷  徐瑞  宋吉明 《化学通报》2017,80(11):1043-1048
采用Schlenk line技术,通过一种简单的硒源热注射的方法合成了Cu_2SnSe_3(CTSe)纳米晶,同时采用胶体法得到了单分散性极好的、粒径为4nm左右的Ag纳米颗粒(Ag NPs),之后通过简单的滴加法向CTSe纳米晶基质中掺入了特定比例的Ag NPs,得到CTSe-Ag纳米复合物。通过X射线粉末衍射、透射电镜、高分辨透射电镜、红外光谱和热重分析等表征了样品的组成、结构和形貌。同时对合成样品的热电性质进行了研究,相关的测试结果表明,以CTSe为基体掺杂AgNPs的样品中,CTSe-1(mol)%Ag具有最佳的热电优值(ZT=0.23,655K),相较纯相CTSe(ZT=0.18,655K)提高了27%。  相似文献   

13.
14.
The structures and relative stabilities of high‐spin n+1Aun?1Ag and nAun?1Ag+ (n = 2–8) clusters have been studied with density functional calculation. We predicted the existence of a number of previously unknown isomers. Our results revealed that all structures of high‐spin neutral or cationic Aun?1Ag clusters can be understood as a substitution of an Au atom by an Ag atom in the high‐spin neutral or cationic Aun clusters. The properties of mixed gold–silver clusters are strongly sized and structural dependence. The high‐spin bimetallic clusters tend to be holding three‐dimensional geometry rather than planar form represented in their low‐spin situations. Silver atom prefers to occupy those peripheral positions until to n = 8 for high‐spin clusters, which is different from its position occupied by light atom in the low‐spin situations. Our theoretical calculations indicated that in various high‐spin Aun?1Ag neutral and cationic species, 5Au3Ag, 3AuAg and 5Au4Ag+ hold high stability, which can be explained by valence bond theory. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

15.
Polar magnetic materials exhibiting appreciable asymmetric exchange interactions can potentially host new topological states of matter such as vortex-like spin textures; however, realizations have been mostly limited to half-integer spins due to rare numbers of integer spin systems with broken spatial inversion lattice symmetries. Here, we studied the structure and magnetic properties of the S = 1 integer spin polar magnet β-Ni(IO3)2 (Ni2+, d8, 3F). We synthesized single crystals and bulk polycrystalline samples of β-Ni(IO3)2 by combining low-temperature chemistry techniques and thermal analysis and characterized its crystal structure and physical properties. Single crystal X-ray and powder X-ray diffraction measurements demonstrated that β-Ni(IO3)2 crystallizes in the noncentrosymmetric polar monoclinic structure with space group P21. The combination of the macroscopic electric polarization driven by the coalignment of the (IO3) trigonal pyramids along the b axis and the S = 1 state of the Ni2+ cation was chosen to investigate integer spin and lattice dynamics in magnetism. The effective magnetic moment of Ni2+ was extracted from magnetization measurements to be 3.2(1) µB, confirming the S = 1 integer spin state of Ni2+ with some orbital contribution. β-Ni(IO3)2 undergoes a magnetic ordering at T = 3 K at a low magnetic field, μ0H = 0.1 T; the phase transition, nevertheless, is suppressed at a higher field, μ0H = 3 T. An anomaly resembling a phase transition is observed at T ≈ 2.7 K in the Cp/T vs. T plot, which is the approximate temperature of the magnetic phase transition of the material, indicating that the transition is magnetically driven. This work offers a useful route for exploring integer spin noncentrosymmetric materials, broadening the phase space of polar magnet candidates, which can harbor new topological spin physics.  相似文献   

16.
The magnetic interactions between two C60 anions are investigated by using unrestricted B3LYP (UB3LYP) calculations. Among four types of interactions, only one type of SOMO–SOMO interaction shows a week ferromagnetic interaction (Jab = 4.6 cm?1) whilst other interactions show week anti-ferromagnetic interactions. In order to explain a mechanism of the ferromagnetic and the anti-ferromagnetic interactions, a natural orbital (NO) analysis and a spin density analysis are carried out. The results of the analyses suggest that orbital orthogonality between SOMOs of each C60 anions is the origin of the ferromagnetic interaction. On the other hand, a spin polarization effect does not appear in a spin density map in the ferromagnetic coupling state.  相似文献   

17.
Optical detection of magnetic resonance experiments on the triplet state of zinc-substitution chlorophyll b has provided the zero-field splitting and depopulation rate constants for the individual triplet spin sublevels. The zero field triplet state EPR transitions could be observed at 890 MHz and 1085 MHz as either microwave-induced changes in the fluorescence intensity or in the intensity of S0 → Sn absorption. The dynamics experiments show that intersystem crossing from the Zn chlorophyll b triplet state into the ground state occurs primarily through the out-of-plane (lowest energy) spin sublevel.  相似文献   

18.
Ag-doped n-type (Bi2Te3)0.9-(Bi2−xAgxSe3)0.1 (x=0-0.4) alloys were prepared by spark plasma sintering and their physical properties evaluated. When at low Ag content (x=0.05), the temperature dependence of the lattice thermal conductivity follows the trend of (Bi2Te3)0.9-(Bi2Se3)0.1; while at higher Ag content, a relatively rapid reduction above 400 K can be observed due possibly to the enhancement of scattering of phonons by the increased defects. The Seebeck coefficient increases with Ag content, with some loss of electrical conductivity, but the maximum dimensionless figure of merit ZT can be obtained to be 0.86 for the alloy with x=0.4 at 505 K, about 0.2 higher than that of the alloy (Bi2Te3)0.9-(Bi2Se3)0.1 without Ag-doping.  相似文献   

19.
Based on the method considering spin and spatial symmetry, numerical calculations of the spin-level spectra have been performed for n-nuclear cyclic clusters with S i = 3/2 (n ≤ 11) and S i = 2 (n ≤ 10). The theoretical curves of the magnetic susceptibility, the magnetic contribution to the heat capacity, the internal energy, and the entropy as a function of temperature have been obtained. The theoretical curves of the magnetic susceptibility and the magnetic contribution to the heat capacity have been extrapolated to n → ∞ with a controlled accuracy.  相似文献   

20.
The electronic structures of small cobalt clusters have been calculated within the local spin density approximation using the LCAO method. The calculations were done for simple geometries with the optimized number of interatomic bonds, and both for the bond length of the cobalt dimer and the bulk metal. The Fermi energy is found to be smaller for Co N clusters withN=3, 4, 5 andN>10 than for the other ones. The variation of the Fermi energy with the cluster size correlates in a striking way with the observed H2 tendency for chemisorption as found for cobalt clusters in a supersonic beam. Furthermore, the magnetic moments are somewhat smaller for these active clusters. In addition the lowest unoccupied levels of majority spin appear close to the highest occupied levels of minority spin which is not the case for the inert clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号