首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Solid State Sciences》2007,9(8):718-721
In recent years the dilute magnetic semiconductors have received much attention due to the complementary properties of semiconductor and ferromagnetic behaviour. Zn1−xMnxO thin films have been synthesized by chemical spray pyrolysis at a substrate temperature of 400 °C with different manganese compositions that vary in the range, 0.0  x  0.25, on Corning 7059 glass substrates. The X-ray diffraction studies revealed that all the films were strongly oriented along the (002) orientation corresponding to the hexagonal wurtzite structure. The crystalline quality of the layers was found to decrease with the increase of x, however, no structural changes were observed over the ‘Mn’ composition range investigated. The optical absorption studies revealed that the energy band gap of the films followed the Vegard's law. The optical band gap of the films prepared at x = 0.15 was found to be ∼3.35 eV. The photoluminescence characteristics of Zn1−xMnxO films showed an emission peak at around 390 nm with a broad band about 530 nm. The details of these results were reported and discussed.  相似文献   

2.
Alloying materials having different band gaps is a tool to tailor the optical energy gaps of semiconducting materials. In the present study, the effect of alloying ZnO with CaO was investigated. Thin films of Zn(1−x)CaxO (0 ≤ x ≤ 0.20) were deposited on glass substrates by spray pyrolysis technique. All the films possessed nanocrystalline grains and crystallinity deteriorated with increase in Ca2+ substitution level. Elemental composition analysis confirmed the presence of Ca in the samples. Films showed good optical transmission in the visible and near infrared region and the absorption edge blue-shifted with Ca2+ substitution. Optical energy gap enhanced by 9.89% upon 20% Ca2+ substitution. Photoluminescence analysis also confirmed band gap broadening with mesovalent cation substitution.  相似文献   

3.
1 at.% Al-doped Zn1−x Cd x O (x = 0–8 at.%) thin films were prepared on glass substrates by sol–gel method. The codoping films retained the hexagonal wurtzite structure of ZnO, and showed preferential c-axis orientation. The effect of annealing ambient (in vacuum and nitrogen) on the optical and electrical properties of (Cd,Al)-codoped ZnO films were investigated using transmission spectra and electrical measurements. The transmittances of the codoping films were obviously degraded by vacuum annealing to 50–60 %, but enhanced to 70–80 % after nitrogen annealing. The carrier concentration and Hall mobility both increased, and resistivity decreased with narrowing band gap of Al-doped Zn1−x Cd x O, below different critical concentrations x = 4 % (in vacuum) and x = 6 % (in nitrogen). It is revealed that the conductivity is also improved by Cd doping along with band gap modification. The variations in optical and electrical properties are ascribed to both the changes of the crystallinity and concentration of oxygen vacancies under different ambient. In view of transmittance and conductivity, nitrogen annealing might be a more effective post-annealing way than vacuum annealing for our (Cd,Al)-codoped ZnO films to meet the requirements of transparent conducting oxide (TCO).  相似文献   

4.
Here we explored a novel and facile electrochemical route for the preparation of Zn1?xCdxO (x is atomic percentage of Cd) nanorods with controllable optical properties. The Zn1?xCdxO nanorods can be routinely obtained when the electrochemical deposition was carried out in solution of Zn(NO3)2 + Cd(NO3)2 + citric acid at ?1.0 V (vs SCE). EDS results demonstrated that Cd, Zn, and O elements existed in the deposits, and ternary Zn1?xCdxO compounds were obtained. XRD results showed that Zn1?xCdxO nanorods were pure ZnO wurtzite structures. HRTEM and SAED analyses confirmed that Zn1?xCdxO nanorods were single-crystalline. The optical properties of Zn1?xCdxO nanorods were investigated in this paper.  相似文献   

5.
Nanocrystals of undoped and nickel-doped zinc oxide (Zn1?x Ni x O, where x?=?0.00?C0.05) were synthesized by the coprecipitation method. Crystalline size, morphology, and optical absorption of prepared samples were determined by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and UV?Cvisible spectrometer. XRD and SEM studies revealed that Ni-doped ZnO crystallized in hexagonal wurtzite structure. Doping of ZnO with Ni2+ was intended to enhance the surface defects of ZnO. The incorporation of Ni2+ in place of Zn2+ provoked an increase in the size of nanocrystals as compared to undoped ZnO. Crystalline size of nanocrystals varied from 10 to 40?nm as the calcination temperature increased. Enhancement in the optical absorption of Ni-doped ZnO indicated that it can be used as an efficient photocatalyst under visible light irradiation. Optical absorption measurements indicated a red shift in the absorption band edge upon Ni doping. The band gap value of prepared undoped and Ni-doped ZnO nanoparticles decreased as annealing temperature was increased up to 800?°C.  相似文献   

6.
Zn1−xMgxO particles were prepared using zinc and magnesium oxalate precursor by co-precipitated method. The lattice constants of Zn1−xMgxO proved that the interstitial Mg formed at 500 °C and Mg replaced Zn in ZnO tetrahedral coordination at 800 °C. Compared with the ZnO, the absorbing band edge of the Zn1−xMgxO displayed blue shifts. The room temperature photoluminescence was similar to ZnO and variation of Mg content did not change the shape or peak position of the emission spectra markedly when it was annealed at 500 °C. However, its blue emission band disappeared, and a relatively strong green light emission at 498 nm appeared after annealed at 800 °C. The photoluminescence intensity ratios I(green)/I(UV) of Zn1−xMgxO varied with Mg content and the green light emission peak shifted from 498 nm to 472 nm when Mg content increased from 0 to 2.0 at.%.  相似文献   

7.
Polycrystalline Mg x Zn1?x O (MZO) thin films on glass substrates were prepared by sol–gel method. All the films retained the hexagonal wurtzite structure of ZnO. The band gap values determined from transmission spectra were found to be smaller than the values obtained from Vegard’s law for the as-deposited MZO films. For the films with x = 0.1, 0.2 and 0.3, the band gap blue-shifted initially and then red-shifted with increase in the annealing temperature. The reason for this anomalous shift in the band gap is attributed to the proper substitution of Mg atoms into the Zn lattice sites after a certain critical annealing temperature.  相似文献   

8.
Ni0.04Zn0.96O and Fe0.03Zn0.97O with average diameter of 23 and 19 nm, respectively, have been synthesized by a modified sol–gel method to be used in the preparation of (100 − x)/x poly(vinyl alcohol)/oxide nanocomposite films, with x = 0, 1, 3 and 5 (in wt.%). A 125 W-Hg vapor lamp with emission above 254 nmwas used to irradiate PVA/Ni0.04Zn0.96O and PVA/Fe0.03Zn0.97O films. The effect on their structural, thermal, morphological and optical properties was studied by TG, DSC, DRX, AFM, UV–vis and PL spectrophotometry. The Ni0.04Zn0.96O addition on PVA films decreases the thermal stability of the polymer in inert and in oxidative atmosphere. In contrast, the Fe0.03Zn0.97O presence in the PVA films seems to increase the thermal stability of the polymer. The characteristic peak of the crystalline phase of PVA and wurtzite phase of the zinc oxide were identified through X-ray diffraction in both films. The crystallinity of the PVA film increases with UV irradiation and with the presence of Ni0.04Zn0.96O and Fe0.03Zn0.97O. The roughness of the PVA film was not modified by the addition of the doped oxides; however, it increases after UV irradiation, more significantly in the films containing the oxides. The PVA film exhibits absorption around 280 nm characteristic of π–π transitions related to carbonyl groups from residuals acetate, while the 95/05 PVA/Ni0.04Zn0.96O and 95/05 PVA/Fe0.03Zn0.97O nanocomposite films show absorption at the visible region which is characteristics of the band gap reduction of the doped oxides. The photoluminescence of PVA was modified by the presence of the oxides in the film. These nanocomposite films are interesting due to their thermal, mechanical (flexible) properties and low cost of production. In addition they are also able to exhibit peculiar optical properties showing potential to be used in photonic devices, gas sensors and organic solar cell applications.  相似文献   

9.
Nanocrystalline Zn1???x Ag x O y (x?=?10??3???50?×?10??3) thin films evolved through electrodeposition over ITO substrate have been investigated for photoelectrochemical splitting of water. Samples were characterized by XRD, EDX, SEM, AFM, UV–visible optical absorption, and Mössbauer spectral analysis. Ag incorporation led to a decrease in the band gap energy and alterations in microstructural and semiconductor properties. Raising Ag concentration in samples up to 1 % at. caused a significant reduction in density and electrical resistivity, enhanced absorption along with red shift to the band gap energy, anodic shift in flat band potential, and increased charge carrier density, enabling 1 % at. Ag-incorporated ZnO films most photosensitive by yielding highest short-circuit current, photocurrent density, and applied bias photon to current efficiency. Plausible reasons have been offered.  相似文献   

10.
Volvox‐like CdxZn1?xS solid solutions with a cubic zinc blend structure were synthesized through a template‐free ethylene glycol process. Cd(Ac)2 ? 2 H2O, Zn(Ac)2 ? 2 H2O, and thiourea are used as the starting materials and dissolved in ethylene glycol. These reaction precursors and solvent not only contributed to control over the formation of the volvox‐like spherical geometry, but also exerted vigorous domination for existence of cubic‐phase CdxZn1?xS nanostructures. As‐prepared volvox‐like CdxZn1?xS nanospheres have a diameter of around 100 nm with extensional shells. These samples show excellent photocatalytic H2 evolution activity from water splitting under visible‐light irradiation without any cocatalyst or scaffolding, owing to their tunable band gap, cubic zinc blend structure, and unique hierarchical porous structure with a high surface area (as high as 95.2 m2 g?1).  相似文献   

11.
Photocatalytic water splitting for hydrogen production using sustainable sunlight is a promising alternative to industrial hydrogen production. However, the scarcity of highly active, recyclable, inexpensive photocatalysts impedes the development of photocatalytic hydrogen evolution reaction (HER) schemes. Herein, a metal–organic framework (MOF)‐template strategy was developed to prepare non‐noble metal co‐catalyst/solid solution heterojunction NiS/ZnxCd1−xS with superior photocatalytic HER activity. By adjusting the doping metal concentration in MOFs, the chemical compositions and band gaps of the heterojunctions can be fine‐tuned, and the light absorption capacity and photocatalytic activity were further optimized. NiS/Zn0.5Cd0.5S exhibits an optimal HER rate of 16.78 mmol g−1 h−1 and high stability and recyclability under visible‐light irradiation (λ>420 nm). Detailed characterizations and in‐depth DFT calculations reveal the relationship between the heterojunction and photocatalytic activity and confirm the importance of NiS in accelerating the water dissociation kinetics, which is a crucial factor for photocatalytic HER.  相似文献   

12.
Reverse micelle chemistry-derived Cu-doped Zn1?xCdxS quantum dots (QDs) with the composition (x) of 0, 0.5, 1 are reported. The Cu emission was found to be dependent on the host composition of QDs. While a dim green/orange emission was observed from ZnS:Cu QDs, a relatively strong red emission could be obtained from CdS:Cu and Zn0.5Cd0.5S:Cu QDs. Luminescent properties of undoped QDs versus Cu-doped ones and quantum yields of alloyed ZnCdS versus CdS QDs are compared and discussed. To enhance Cu-related red emission of CdS:Cu and Zn0.5Cd0.5S:Cu core QDs, core/shell structured QDs with a wider band gap of ZnS shell are also demonstrated.  相似文献   

13.
Partial substitution of cations and anions in perovskite-type materials is a powerful way to tune the desired properties. The systematic variation of the cations size, the partial exchange of O2− for N3− and their effect on the size of the optical band gap and the thermal stability was investigated here. The anionic substitution resulted in the formation of the orthorhombic perovskite-type oxynitrides Mg0.25Ca0.65Y0.1Ti(O,N)3, Ca1-xYxZr(O,N)3, and Sr1–xLaxZr(O,N)3. A two-step synthesis protocol was applied: i) (nano-crystalline) oxide precursors were synthesized by a Pechini method followed by ii) ammonolysis in flowing NH3 at T = 773 K (Ti) and T = 1273 K (Zr), respectively. High-temperature synthesis of such oxide precursors by solid–state reaction generally resulted in phase separation of the different A-site cations. Changes of the crystal structures were investigated by Rietveld refinements of the powder XRD data, thermal stability by DSC/TG measurements in oxygen atmosphere, oxygen and nitrogen contents by O/N analysis using hot gas extraction technique, and optical band gaps by photoluminescence spectroscopy. By moving from Mg0.25Ca0.65Y0.1Ti(O,N)3 via Ca1–xYxZr(O,N)3 to Sr1–xLaxZr(O,N)3, the degree of tilting of the octahedral network is reduced, as observed by an increase in the BXB angles caused by the simultaneously increasing effective ionic radius of the A-site cation(s). In general, increasing substitution levels on the A-site (Y3+ and La3+) are accompanied by an enhanced replacement of O2− by N3−. In all three systems, this anionic substitution resulted in a reduction of the optical band gap by approximately 1 eV (Ti) and up to 2.1 eV (Zr) compared to the respective oxides. For Mg0.25Ca0.65Y0.1Ti(O,N)3 an optical band gap of 2.2 eV was observed, appropriate for a solar water splitting photocatalyst. The Zr-based oxynitrides required a by a factor of 2 higher nitrogen contents to significantly reduce the optical band gap and the measured values of 2.9 eV–3.2 eV are larger compared to the Ti-based oxynitride. Bulk thermal stability was revealed up to T = 881 K. In general, the thermal stability decreased with increasing substitution levels due to an increasing deviation from the ideal anionic composition as demonstrated by O/N analysis.  相似文献   

14.
The transition metal-doped zinc oxides, Zn1?xMxO (M = Cu, Mn and Fe) were synthesized by using solid-state reaction method and co-precipitation method. Samples prepared by co-precipitation method showed exactly same structure and properties compared to those made by solid-state reaction method. XRD, XRF and mapping analyses showed that Zn was successfully substituted with Cu, Mn and Fe by co-precipitation method. Zn1?xMxO samples exhibited new absorption shoulder in visible light region so that they showed photocatalytic activity in the visible light region. The highest photocatalytic activity under visible light was found in the Mn-substituted zinc oxide.  相似文献   

15.
《Comptes Rendus Chimie》2002,5(3):149-155
Cd1–xZnxS is an important material that can be used to make n-type window-layers for thin film heterojunction solar cells. After a theoretical study of the solution chemistry of cadmium and zinc sulphates, ammonia and thiourea corresponding to sulphurs precipitation, we have been interested in the study of the effect of some parameters (temperature and zinc concentration) on the deposition process of Cd1–xZnxS on a glass substrate. X-ray diffraction studies showed that this latter compound crystallises in a hexagonal wurtzite crystalline structure. The AFM analysis showed that a homogenous deposited film was obtained for x = 0.1. The different values of gap energy are in the range 2,42–2,50 eV for x values between 0.08 and 0.28.  相似文献   

16.
[Ba1–xY2x/3](Zr0.25Ti0.75)O3 powders with different yttrium concentrations (x = 0, 0.025 and 0.05) were prepared by solid state reaction. These powders were analyzed by X-ray diffraction (XRD), Fourier transform Raman scattering (FT-RS), Fourier transform infrared (FT-IR) and X-ray absorption near-edge (XANES) spectroscopies. The optical properties were investigated by means of ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) measurements. Even with the addition of yttrium, the XRD patterns revealed that all powders crystallize in a perovskite-type cubic structure. FT-RS and FT-IR spectra indicated that the presence of [YO6] clusters is able to change the interaction forces between the O–Ti–O and O–Zr–O bonds. XANES spectra were used to obtain information on the off-center Ti displacements or distortion effects on the [TiO6] clusters. The different optical band gap values estimated from UV–vis spectra suggested the existence of intermediary energy levels (shallow or deep holes) within the band gap. The PL measurements carried out with a 350 nm wavelength at room temperature showed that all powders present typical broad band emissions in the blue region.  相似文献   

17.
以异丙醇为溶剂,醇热法制备Zn0.5Cd0.5S和Ag2S或CuS掺杂的Zn0.5Cd0.5S纳米晶体,考察了这些纳米晶体在可见光区域的光致发光性能。结果表明,反应温度和反应时间、掺杂剂的浓度和种类对Zn0.5Cd0.5S的发光性能有很大的影响,相比未掺杂Zn0.5Cd0.5S纳米晶体而言,Ag2S或CuS掺杂后其光致发光强度明显增强、半高宽更宽。  相似文献   

18.
Optical transmission and reflection measurements of highly oriented nanocrystalline KxV2O5·nH2O films (0 ≤ x < 0.01) were studied. The optical constants such as, refractive index, the extinction coefficient, absorption coefficient, optical band gap have been calculated. The optical spectra of all samples exhibited two distinct regions of optical gap, Eop1 suggesting a direct allowed transition with optical gap ranging from 0.37 up to 0.42 eV and Eop2 suggesting a direct forbidden transition with optical gap ranging from 2.02 up to 2.23 eV. This indicates that KxV2O5·nH2O films have more than one type of conduction mechanism.  相似文献   

19.
The high pressure phase transition in Cd1−xMnxTe (0 ≤ x ≤ 0.5), which is from the cubic zinc-blende structure (B3) to the NaCl structure (B1), is investigated by using first principles spin-polarized LCAO calculations based on the density functional theory (DFT) formalism. The calculations indicate that the transition pressure of the B3-to-B1 structural phase transformation depends on the Mn content of the sample. This result is consistent with the expectation that the substitution of Cd by Mn in CdTe tends to perturb the tetrahedral coordination geometry and thereby to destabilize the B3 structure. Several structural properties (equilibrium lattice constant, bulk modulus, transition pressure, etc.) of Cd1−xMnxTe (x = 0.0, 0.25 and 0.5) CdTe have been calculated, which are in agreement with the previous results.  相似文献   

20.
In this paper, Barium Strontium Tungstate (Ba1−xSrx)WO4 crystals with (x = 0; 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0) were prepared by standard wet milling ceramic preparation method. These crystals were structurally characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectroscopic techniques. The shape, growth and average crystal size distribution of these crystals were investigated by a scanning electron microscope (SEM). Their optical properties were investigated by ultraviolet visible (UV–vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinements data, FT-Raman and FT-IR spectroscopies indicate that all the crystals present a scheelite-type tetragonal structure without deleterious phases. FT-Raman spectra exhibited 6 Raman active modes in range from 100 to 1000 cm−1, while the FT-IR spectra presented 2 infrared active modes in range from 500 to 1000 cm−1. SEM micrographs showed well sintered BaWO4 grains, while the substitution of Sr induced modifications in the shape and reduction in the grain size. UV–vis absorption measurements evidenced an increase in the values of the optical band gap (from 4.36 to 4.53 eV) with the increase of Sr into BaWO4 lattice. Dielectric constant, temperature coefficient of resonant frequency (τf), quality factors were measured with Hakki–Coleman technique. The value of τf found −43.68 ppm/°C for BaWO4 which increased to −21.40 ppm/°C for the SrWO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号