共查询到20条相似文献,搜索用时 12 毫秒
1.
Wang G Dai S Zhang J Wen L Yang J Jiang Z 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2006,64(2):349-354
We present the results of a study that uses theoretical and experimental methods to investigate the characteristics of the upconversion luminescence of Tm3+/Yb3+ codoped TeO2-BiCl3 glass system as a function of the BiCl3 fraction. These glasses are potentially important in the design of upconversion fiber lasers. Effect of local environment around Tm3+ on upconversion fluorescence intensity was analyzed by theoretical calculations. The structure and spectroscopic properties were investigated in the experiments by measuring the Raman spectra, IR transmission spectra, and absorption and fluorescence intensities at room temperature. The results indicate that blue luminescence quantum efficiency increases with increasing BiCl3 content from 10 to 60 mol%, which were interpreted by the increase of asymmetry of glass structure, decrease of phonon energy and removing of OH- groups. 相似文献
2.
3.
Ana-Maria Voiculescu Serban Georgescu Silviu Nastase Cristian Matei Daniela Berger Cristina Matei Angela Stefan Octavian Toma 《Journal of Sol-Gel Science and Technology》2012,64(3):667-672
Nanopowders of langasite (La3Ga5SiO14) doped with 1 at.% Er3+ and 3 at.% Yb3+ were synthesized for the first time by a modified Pechini route and annealed in air at 700, 750, 800, 900, and 1,000?°C. The langasite powders were characterized by XRD, FTIR and luminescence techniques. Crystallization began at 750?°C and pure langasite phase was obtained for the samples annealed at 800 and 900?°C. Traces of LaGaO3 and Ga2O3 were observed in the sample annealed at 1,000?°C. Bright green and red luminescence was observed for pumping at 973?nm whose intensity increased with annealing temperature due to the removal of the adsorbed impurities and the improvement of crystallinity. 相似文献
4.
Guofeng Wang Yue Xu Lili Wang Guodong Wei Peifen Zhu Ryongjin Kim 《Journal of fluorine chemistry》2008,129(11):1110-1113
The upconversion luminescent properties of YF3:Yb3+(20%)/Tm3+(1%) nanobundles with different sizes (240-500 nm in length) were studied under 980-nm excitation. Ultraviolet (1I6 → 3F4/3H6 and 1D2 → 3H6), blue (1D2 → 3F4 and 1G4 → 3H6), red (1D2 → 3H4, 1G4 → 3F4, and 3F3 → 3H6), and near infrared (3H4 → 3H6) emissions were observed. The results indicated that the relative intensity of the ultraviolet to the blue as well as the blue to the near infrared increased with decreasing the size of nanobundles. Especially, the position of the dominant red emission peak varied with the size of nanobundles. As the length of nanobundles increased to 500 nm, unusual 3F3 → 3H6 transition was observed, which was theoretically explained considering the decrease of the nonradiative transition rate of 3F3 → 3H4. 相似文献
5.
Sun H Duan Z Zhou G Yu C Liao M Hu L Zhang J Jiang Z 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2006,63(1):149-153
Tm3+/Yb3+-codoped heavy metal oxide-halide glasses have been synthesized by conventional melting and quenching method. Structural properties were obtained based on the Raman spectra, indicating that halide ion has an important influence on the phonon density and maximum phonon energy of host glasses. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1G4-->3H6 and 1G4-->3H4, respectively, were observed at room temperature. The possible up-conversion mechanisms are discussed and estimated. With increasing halide content, the up-conversion luminescence intensity and blue luminescence lifetimes of Tm3+ ion increase notably. Our results show that with the substitution of halide ion for oxygen ion, the decrease of phonon density and maximum phonon energy of host glasses both contribute to the enhanced up-conversion emissions. 相似文献
6.
Xu S Fang D Zhang Z Jiang Z 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2005,62(1-3):690-693
To obtain efficient blue upconversion laser glasses, upconversion luminescence and mechanisms of Tm(3+)/Yb(3+)-codoped oxyhalide tellurite glasses were investigated under 980 nm excitation. The results showed that upconversion blue and red emission intensities of Tm(3+) first increase, reach its maximum at Tm(2)O(3)%=0.1 mol %, and then decrease with increasing Tm(2)O(3) content. The effect of Tm(2)O(3) content on upconversion intensity is discussed, and possible effect mechanisms are evaluated. The investigated results were conducing to increase upconversion luminescence efficiency of Tm(3+). 相似文献
7.
Mahalingam V Naccache R Vetrone F Capobianco JA 《Chemical communications (Cambridge, England)》2011,47(12):3481-3483
The intensity of high energy UV and blue upconverted emissions of Tm(3+) ions in Tm(3+)/Yb(3+) co-doped LiYF(4) colloidal nanocrystals was selectively reduced compared to the NIR emission at 802 nm. This was achieved by doping a small amount of Dy(3+) ions into the host matrix. 相似文献
8.
Wang X Liu L Nie Q Xu T Shen X Dai S Zhang X 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2007,67(3-4):1025-1029
Up-conversion luminescence characteristics under 975 nm excitation have been investigated with Tb3+/Tm3+/Yb3+ triply doped tellurite glasses. Here, green (547 nm: (5)D(4)-->(7)F(4)) and red (660 nm: (5)D(4)-->(7)F(2)) up-conversion (UC) luminescence originating from Tb3+ is observed strongly, because of the quadratic dependences of emission intensities on the excitation power. Especially, the UC luminescence was intensified violently with the energy transfer from the Tm3+ ions involves in the Tb3+ excitation. To the Tb3+/Tm3+/Yb3+ triply doped glass system, a novel up-conversion mechanism is proposed as follows: the energy of (3)G(4) level (Tm3+) was transferred to (5)D(4) (Tb(3+)) and the 477-nm UC luminescence of Tm3+ was nearly quenched. 相似文献
9.
Zhang J Duan Z He D Dai S Zhang L Hu L 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2005,62(4-5):831-834
Up-conversion luminescence properties of a Tm3+/Yb3+ codoped oxyfluoride glass-ceramics under 980 nm excitation are investigated. Intense blue emission centered at 476 nm, corresponding to 1G4-->3H6 transitions of Tm3+ was simultaneously observed in the transparent oxyfluoride glass ceramics at room temperature. The intensity of the blue up-conversion luminescence in a 1 mol% YbF3-containing glass-ceramic was found to be about 40 times stronger than that in the precursor oxyfluoride glass. The reason for the intense Tm3+ up-conversion luminescence in the oxyfluoride glass-ceramics is discussed. The dependence of up-conversion intensities on excitation power and possible up-conversion mechanism are also evaluated. 相似文献
10.
Study of luminescence properties of novel Er3+ single-doped and Er3+/Yb3+ co-doped tellurite glasses 总被引:2,自引:0,他引:2
Gao Y Nie QH Xu TF Shen X 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2005,61(6):1259-1262
The novel Er(3+) single-doped and Er(3+)/Yb(3+) co-doped tellurite glasses were prepared. The effect of Yb(2)O(3) concentration on absorption spectra, emission spectra and upconversion spectra of glasses were measured and investigated. The emission intensity, fluorescence full width at half maximum (FWHM) and upconversion luminescence of Er(3+) go up with the increasing concentration of Yb(3+) ions. The maximum FWHM of (4)I(13/2) --> (4)I(15/2) transition of Er(3+) is approximate 77 nm for 1.41 x 10(21)ions/cm(3) concentration of Yb(3+)-doped glass. The visible upconversion emissions at about 532, 546 and 659 nm, corresponding to the (2)H(11/2) --> (4)I(15/2), (4)S(3/2) --> (4)I(15/2) and (4)F(9/2) --> (4)I(15/2) transitions of Er(3+), respectively, were simultaneously observed under the excitation at 970 nm. Subsequently, the possible upconversion mechanisms and important role of Yb(3+) on the green and red emissions were discussed and compared. The results demonstrate that this kind of tellurite glass may be a potentially useful material for developing potential amplifiers and upconversion optical devices. 相似文献
11.
Guofeng Wang Guodong Wei Peifen Zhu Daisheng Zhang Fuheng Ding 《Journal of fluorine chemistry》2009,130(2):158-13127
YF3:Yb3+(20%)/Tm3+(2%) octahedral nanocrystals were synthesized by a microemulsion method with NH4HF2. Pumped with a 980-nm diode laser, the nanocrystals emitted weak blue and intense ultraviolet light. Especially, unusual 3P2 → 3H6 (∼265 nm) and 3P2 → 3F4 (∼309 nm) emissions, coming from a five-photon excitation process, were observed. The emissions from 1D2 and 1I6 were much stronger than those from 1G4 and 3H4. The upconversion mechanism was discussed in detail. 相似文献
12.
Mohammad Asadi Mehdi Ghahari Seyed A. Hassanzadeh-Tabrizi Amir M. Arabi Rozita Nasiri 《中国化学会会志》2020,67(5):720-731
Synthesis, characterization, and in vitro toxicity evaluation of upconversion luminescence NaLuF4:Yb3+/Tm3+ nanoparticles (UCLNPs) are reported in the current study. Initially, the synthesized lanthanide trifluoroacetate (Ln(OOCCF3)3) precursor was used to fabricate NaLuF4 nanoparticles doped with Yb3+ and Tm3+ metal ions. The nanoparticles were coated with calcium carbonate (CaCO3) after removing the hydrophobic species on them to enhance their biocompatibility. The in vitro methylthiazolyldiphenyl-tetrazoliumbromide (MTT) test was used to evaluate the toxicity of synthesized NaLuF4:Yb3+/Tm3+ nanoparticles (NLF-5) on L929 mouse fibroblast cell lines. The transmission electron microscopy image showed that the particle size of NaLuF4:Yb3+/Tm3+ was 32 nm. The synthesized NLF-5 nanoparticles have both α-cubic and β-hexagonal crystalline structures that provided a superb near-infrared-to-near-infrared upconversion luminescence signal when excited at 980 nm. MTT test results show that the death of L929 fibroblast cells was observed only at concentrations above 250 μg/mL of NaLuF4:Yb3+/Tm3+ nanoparticles. In addition, with an increase in patrol time of 24, 48, and 72 hr, cell toxicity increased significantly, while the coated nanoparticles did not have any toxic effects. The synthesized nanoparticles could be used as a suitable material for medical applications due to their small particle size, high photoluminescence emission intensity, and low toxicity. 相似文献
13.
Huang S Zhang X Wang L Bai L Xu J Li C Yang P 《Dalton transactions (Cambridge, England : 2003)》2012,41(18):5634-5642
Yttrium tungstate precursors with novel 3D hierarchical architectures assembled from nanosheet building blocks were successfully synthesized by a hydrothermal method with the assistance of sodium dodecyl benzenesulfonate (SDBS). After calcination, the precursors were easily converted to Y(2)(WO(4))(3) without an obvious change in morphology. The as-prepared precursors and Y(2)(WO(4))(3) were characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM), and photoluminescence (PL) spectra, respectively. The results reveal that the morphology and dimensions of the as-prepared precursors can be effectively tuned by altering the amounts of organic SDBS and the reaction time, and the possible formation mechanism was also proposed. Upon ultraviolet (UV) excitation, the emission of Y(2)(WO(4))(3):x mol% Eu(3+) microcrystals can be tuned from white to red, and the doping concentration of Eu(3+) has been optimized. Furthermore, the up-conversion (UC) luminescence properties as well as the emission mechanisms of Y(2)(WO(4))(3):Yb(3+)/Ln(3+) (Ln = Er, Tm, Ho) microcrystals were systematically investigated, which show green (Er(3+), (4)S(3/2), (2)H(11/2)→(4)I(15/2)), blue (Tm(3+), (1)G(4)→(3)H(6)) and yellow (Ho(3+), (5)S(2)→(5)I(8)) luminescence under 980 nm NIR excitation. Moreover, the doping concentration of the Yb(3+) has been optimized under a fixed concentration of Er(3+) for the UC emission of Y(2)(WO(4))(3):Yb(3+)/Er(3+). 相似文献
14.
Lili Wang Chunyan Cao Dan Zhao Kezhi Zheng Feng Shi Weiping Qin 《Journal of fluorine chemistry》2009,130(11):1059-506
A facile hydrothermal method is used for the preparation of Tm3+/Yb3+ codoped fluoride microphosphors. The effect of crystal structure and ions concentration on the spectra and lifetimes of the radiative levels of Tm3+ ions in the different fluoride microcrystals is studied in detail. XRD analysis of Tm3+/Yb3+ codoped LaF3 microcrystals shows that 20% Yb3+ doping is sufficient for hexagonal LaF3 microparticles to crystallize completely in the orthorhombic phase. And lifetime analysis suggests that the average lifetimes of the radiative levels of Tm3+ ions increased when the matrix phase structure changing from orthorhombic phase to hexagonal phase with ytterbium dopant concentration changing. 相似文献
15.
Qinqin Ma Jie Wang Wei Zheng Qian Wang Zhiheng Li Hengjiang Cong Huijun Liu Xueyuan Chen Quan Yuan 《中国科学:化学(英文版)》2018,61(12):1624-1629
Phosphor materials have been rapidly developed in the past decades. Developing phosphors with desired properties including strong luminescence intensity and long lifetime has attracted widespread attention. Herein, we show that hetero-valence ion doping can serve as a potent strategy to manipulate luminescence in persistent phosphors by controlling disorder in the host lattice. Specifically, spinel phosphor Zn(Ga_(1-x)Zn_x)(Ga_(1-x)Ge_x)O_4:Cr is developed by doping ZnGa_2O_4:Cr with tetravalent Ge~(~(4+)).Compared to the original ZnGa_2O_4:Cr, the doped Zn(Ga_(1-x)Zn_x)(Ga_(1-x)Ge_x)O_4:Cr possesses significantly enhanced persistent luminescence intensity and prolonged decay time. Rietveld refinements show that Ge~(4+)enters into octahedral sites to substitute Ga~(3+), which leads to the co-substitution of Ga~(3+) by Zn~(2+) for charge compensation. The hetero-valence substitution of Ga~(3+) by Ge~(4+)and Zn~(2+) enriches the charged defects in Zn(Ga_(1-x)Zn_x)(Ga_(1-x)Ge_x)O_4:Cr, making it possible to trap large amounts of charge carriers within the defects during excitation. Electron paramagnetic resonance measurement further confirms that the amount of Cr~(3+) neighboring charged defects increases with Ge~(4+)doping. Thus charge carriers released from defects can readily combine with the neighboring Cr~(3+) to produce bright persistent luminescence after excitation ceases. The hetero-valence ion doping strategy can further be employed to develop many other phosphors and contributes to lighting, photocatalysis and bioimaging. 相似文献
16.
Syamchand Sasidharanpillai S. Aparna Ravindran S. Sony George 《Mikrochimica acta》2017,184(7):2255-2264
Microchimica Acta - The authors report on upconversion (UC) nanocrystals based on a gold-ZnO nanocomposite that enables HeLa cells to be characterizes via fluorescence imaging (FI),... 相似文献
17.
18.
Optical parameters and upconversion fluorescence in Tm3+/Yb3+-doped alkali-barium-bismuth-tellurite glasses 总被引:1,自引:0,他引:1
Lin H Liu K Lin L Hou Y Yang D Ma T Pun EY An Q Yu J Tanabe S 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2006,65(3-4):702-707
Tm(3+)/Yb(3+)-doped alkali-barium-bismuth-tellurite (LKBBT) glasses have been fabricated and characterized. Density, refractive index, optical absorption, absorption and emission cross-sections of Yb(3+), Judd-Ofelt parameters and spontaneous transition probabilities of Tm(3+) have been measured and calculated, respectively. Intense blue three-photon upconversion fluorescence and near-infrared two-photon upconversion fluorescence were investigated under the excitation of a 980 nm diode laser at room temperature. Wide infrared transmission window, high refractive index and strong blue three-photon upconversion emission of Tm(3+) indicate that Tm(3+)/Yb(3+) co-doped LKBBT glasses are promising upconversion optical and laser materials. 相似文献
19.
Indris S Amade R Heitjans P Finger M Haeger A Hesse D Grünert W Börger A Becker KD 《The journal of physical chemistry. B》2005,109(49):23274-23278
Titanium dioxide (TiO2) is widely used for applications in heterogeneous photocatalysis. We prepared nanocrystalline powders of the anatase as well as the rutile modification by high-energy ball milling of the coarse grained source materials for up to 4 h. The resulting average grain size was about 20 nm. The morphology of the powders was investigated with transmission electron microscopy, X-ray powder diffraction, and BET surface area determination. Measurements of the catalytic activity reveal a maximum as a function of the milling time at about 40 min. This maximum could be explained by a superposition of two counteracting effects. The first one is the increase of the specific surface area resulting in an increase of the catalytic activity, and the second one is a change of the electronic structure at the surface of the TiO2 particles corresponding to a reduction of the surface. The latter one was confirmed by light absorption experiments, X-ray photoelectron spectroscopy, and electron paramagnetic resonance spectroscopy. 相似文献
20.
Kaur Jagjeet Dubey Vikas Parganiha Yogita Singh Deepti Suryanarayana N. S. 《Research on Chemical Intermediates》2015,41(6):3597-3621
Research on Chemical Intermediates - In this paper we review the luminescence properties of Pr3+-doped CaTiO3 phosphors, the different methods of sample preparation, and characterization of the... 相似文献