首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structural, electronic and elastic properties of BeSe in both B3 and B8 structures have been studied by first-principles calculations within the generalized gradient approximation (GGA). The calculated lattice parameters and bulk modulus of BeSe are in reasonable agreement with previous results. The predicted value of phase transition pressure from B3 to B8 is 50.24 GPa, which is well in line with the experimental data (56 ± 5 GPa). The calculation of the electronic band structure shows that the energy gap is indirect for B3 and B8 phases. Especially, the elastic constants of B8 BeSe under high pressure were studied for the first time. The bulk modulus, shear modulus, compressional and shear wave velocities of B8 BeSe evaluated from elastic constants as a function of pressure were investigated. In addition, Poisson's radio, elastic anisotropy and Debye temperature were analyzed successfully.  相似文献   

2.
An ab-initio gaussian lobe function study of the structure and some molecular properties of the HPO molecule is reported. By a partial optimization of the geometrical structure the following equilibrium structure parameters are found: rPO = 1.536 Å; rPH = 1.475 Å; the bond angle is found to be close to 102° with a bending force constant of 0.58 mdyne/Å. The dipole moment, effective charges and quadrupole term components at various bond angles are reported. The wavefunction of the equilibrium geometry is available from the authors upon request.  相似文献   

3.
Calculations are presented for the structural, electronic, and vibrational properties of the different Ti8C12 metallocarbohedrynes. (Please note that we adopt the name "metallocarbohedrynes" instead of "metallocarbohedrenes" to denote the acetylenic nature of C2 units in this class of clusters demonstrated by several contributions in literature.) The density-functional theory (DFT) calculations are performed with the all-electron projector augmented-wave method and generalized gradient approximation for the exchange-correlation functional. We study the seven low-energy isomers of the Ti8C12 metallocarbohedrynes using spin-polarized DFT, where we find a correlation between the number of rotated carbon dimers and the cohesive energy of the structure. The electronic density of states (eDOS) show that C3nu, D*3d, and D3d isomers are spin polarized. The partial eDOS shows that, depending on the dimer orientation, carbon atoms and a subgroup of the metal atoms form a covalent framework while other metal atoms are bonded to this framework more ionically. This picture is further supported by the charge density of the different structures, where we see that the Ti atoms with higher charge density show less contribution to the covalent bonding of the Ti-C framework. The vibrational spectra of the different structures are calculated using the frozen-vibration method. Also, we calculate the vibrational spectra of the C3nu and C2nu structures using molecular-dynamics simulations at two different temperatures. The results of the simulations demonstrate the local stability of the structures beyond the harmonic limit explored by the frozen-vibration method.  相似文献   

4.
In this study, structural, electronic, optical and thermoelectric aspects of Zinc Sulfide (ZnS) and Zinc Telluride (ZnTe) have been explored in detail. These calculations have been done by utilizing FP-LAPW method via Density Functional Theory (DFT). In order to attain accurate band gaps, opto-electronic properties are evaluated with modified Becke Johnson potential (mBJ). From band structure plots, both ZnS and ZnTe reveals direct (Γv–ΓC) band gap semiconductors in nature with bandgap value equal to 3.5 and 2.3 eV while in Density Of States (DOS) major influence is observed due to p states of S/Te and d state of Zn. Prominent variation of optical responses such as high values of imaginary dielectric constants 𝜀1 (ω) and n (ω) refractive index suggests that ZnS and ZnTe are applicant materials for future photonics and microelectronic devices. The thermoelectric aspects were explored by Boltz Trap code to determine electrical and thermal conductivities, Seebeck coefficients, power factors and figure of merit. The figure of merits is closer to 1 while compared with p-type ZnS and ZnTe, n-type ZnS and ZnTe has good thermoelectric properties, which are attributed to low thermal conductivity of the hole and larger effective mass. The goal of this research is to investigate not only the detailed physical aspects but also to provide an overview of its future applications in optoelectronics, displays, sensors and microelectronic industry.  相似文献   

5.
The relation between molecular energetics and aromaticity was investigated for the interaction between the amino functional group and the nitrogen atoms of the pyridine and pyrimidine rings, using experimental thermodynamic techniques and computational geometries, enthalpies, chemical shifts, atomic charges and the Quantum Theory of Atoms in Molecules. 2,4-diaminopyrimidine and 2,4,6-triaminopyrimidine were studied by static bomb combustion calorimetry and Knudsen effusion technique. The derived gaseous-phase enthalpies of formation together with the enthalpies of formation of the three isomers of aminopyridine reported in the literature, were compared with the calculated computationally ones and extended to other diamino- and triaminopyrimidine isomers using the MP2/6-311++G(d,p) level of theory.The results were analyzed in terms of enthalpy of interaction between substituents and, due to the absence of meaningful stereochemical hindrance, strong inductive effects, or intramolecular hydrogen bonds according to QTAIM results, the resonance electron delocalization plays an almost exclusive role in the very exothermic enthalpies obtained. Therefore, this enthalpy of interaction was used as an experimental energetic measure of resonance effects and analyzed in terms of aromaticity. It was found that more conjugation between substituents means less aromaticity according to the magnetic (NICS) and electronic (Shannon) criteria, but more aromaticity according to the geometric (HOMA) criterion.  相似文献   

6.
Bonding, vibrational and magnetic properties of the cage-like molecule C(24)O(12) are studied by DFT calculations. Infrared- and Raman-active vibrational frequencies of the cage-like molecule C(24)O(12) are assigned. Two (13)C and one (17)O nuclear magnetic resonance (NMR) spectral signals of the cage-like molecule C(24)O(12) are characterized. Heat of formation of the cage-like molecule C(24)O(12) is estimated. Compared to C(60) and the cage-like molecule C(24)O(12), only from the thermodynamic points of view, C(24)O(12) is more stable than C(60). Thus we believe that the cage-like molecule C(24)O(12) has sufficient stability to allow its experimental preparation. We proposed that it could be synthesized by using the condensation of molecules C(6)(OH)(6) and C(12)Cl(12). Since the symmetry of C(24)O(12) is D(6), it is a chiral molecule.  相似文献   

7.
Electronic and magnetic properties of BiCoO(3) have been investigated using the ab initio density-functional calculations with local spin density approximation (LSDA) and LSDA+U methods. The structural stability and the origin of the multiferroism for ferroelectronic and ferromagnetic existence were addressed. It was shown that the stability of the C-type antiferromagnetic (C-AFM) structure is better than that of other possible configurations. The hybridization between Bi-O and Co-O with interplay and a local magnetic moment on the Co(3+) play important roles for the nature of the ferroelectricity and ferromagnetism. Theoretical calculations predict the insulating ground state with a band gap of 2.11 eV in the C-AFM ordering for BiCoO(3) originated from the antiferromagnetic interaction in the ab plane, which is in well agreement with experiments.  相似文献   

8.
Model core potential computations were performed for Rh2, Rh3, and Rh4 clusters and their respective cations and anions using the linear combination of Gaussian‐type orbital, nonlocal spin density method. The optimized geometries, electronic and magnetic structures, binding and fragmentation energies, adiabatic ionization potentials, and electron affinities were determined. Results show that the ionization potentials, electron affinities, binding energies, and magnetic moments decrease with the cluster size. For Rh2 and Rh3 the most stable structures exhibit ferromagnetic properties, while Rh4 in its ground state is found to be paramagnetic. The structures of minimum energy for the charged species often differs from the corresponding neutral one. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001  相似文献   

9.
The structural, electronic, and magnetic properties of iridium clusters with sizes of n = 2-15 are investigated by employing the generalized gradient approximation of density functional theory. Simple cube evolution pattern is revealed for Ir(2-15) clusters, as predicted by previous reports. It is remarkable that for Ir(10), Ir(11) clusters, new generated isomers with higher stabilities relative to those reported in previous studies are obtained. The even-sized clusters are more stable than the odd-sized species. The Ir-Ir bonds in the cubic Ir(8) and Ir(12) clusters, which are considered as the basic units in the structural evolution present covalent character. Starting from n = 8, the magnetic moments of Ir(n) clusters decrease sharply. The moments of magnetic clusters show 5d characters. The reactive site selectivity of studied clusters with n = 5-15 is analyzed with condensed Fukui function. The capped atoms in certain clusters (Ir(9), Ir(10), Ir(11), and Ir(13)) generally show extraordinary activity for both nucleophilic and electrophilic attack.  相似文献   

10.
In this Letter we report a density functional all-electron calculation of the structural and electronic properties of the polynitrogen high-energy molecule, azidopentazole (N8). We have also performed a vibrational analysis to determine the IR and Raman spectra. Our calculated geometrical properties and vibrational frequencies are in good agreement with previous ab initio and density functional calculations. The weaker IR modes show a different relative ordering than previously reported. We also report calculated Raman intensities for azidopentazole.  相似文献   

11.
Based on the density functional pseudo-potential method, the structural properties, the band structure, the density of states and the optical properties of the pure and Sc-doped AlN are calculated. The calculation results indicate that the defect of Sc(Al) exists steadily with a certain solubility in the doped system. Sc substitution of the Al site induces effective reduction of the band gap of AlN and the band gap being continuously reduced when increasing Sc concentrations. The existence of the strong hybridization between Sc 3d and N 2p indicates the transport of electrons from Sc atoms to N atoms. Besides, it is shown that the insertion of Sc atom leads to redshift of the optical absorption edge. The intensity of both the imaginary part of the dielectric function and the optical absorption of Al1 ? x Sc x N are found to decrease with increasing Sc concentrations in the low energy range.  相似文献   

12.
The geometric and electronic structure of the recently found new polymorph of tantalum oxynitride, gamma-TaON, and its structural stability were studied quantum-chemically at the density functional level. Results obtained by complementary quantum-chemical techniques with wavefunctions either expanded in atom-centered functions or in plane waves were compared, having employed pure density-functional functionals within the generalized gradient approximation as well as density-functional/Hartree-Fock hybrid methods. In particular, several plausible anion distributions were investigated and, in accordance with Pauling's second rule, it was found that the configuration in which nitrogen occupies crystallographic sites with highest coordination numbers is the most stable one. Theoretically generated local structural parameters were used to improve the accuracy of the experimentally derived information. The bonding situation in the most stable configuration was investigated by an analysis of the density of states.  相似文献   

13.
We used density functional theory (DFT) to study the structural, elastic, electronic, and lattice dynamical properties of tetragonal BiCoO3 applying the “norm-conserving” pseudopotentials within the local spin density approximation (LSDA). The calculated equilibrium lattice parameters and atomic displacements are in agreement with the available experimental and theoretical results. Moreover, the structural stability of tetragonal BiCoO3 were confirmed by the calculated elastic constants. In addition, the elastic properties of polycrystalline aggregates including bulk, shear and Young's moduli, and Poisson's ratio are also determined. The electronic band structure, total and partial density of states (DOS and PDOS) with ferromagnetic spin configuration are obtained. The results show that tetragonal BiCoO3 has an indirect band gap with both up- and down-spin configurations and its bonding behavior is of covalent nature. We compute Born effective charge (BEC) which is found to be quite anisotropic of Bi, Co and O atoms. The infrared and Raman active phonon mode frequencies at the Г point are found. The phonon dispersion curves exhibit imaginary frequencies which lead from the high-symmetry tetragonal phase to low-symmetry rhombohedral phase in BiCoO3. The six independent elastic constants, including bulk, shear and Young's moduli, and Poisson's ratio, complete BEC tensor and phonon dispersion relations in tetragonal BiCoO3 are predicted for the first time. Results of the calculations are compared with the existing experimental and theoretical data.  相似文献   

14.
We report self-consistent ab initio calculations of structural and electronic properties for a kind of recently synthesized inorganic electride. The optimized geometry gives zigzag cesium chains within the sinusoidal channels of the zeolite. Among the wide energy gap of the zeolite, near the conduction bands, there are two interstitial electride bands mainly contributed by 6s electrons of Cs atoms, which have a delocalized real space distribution along the channels. For all different doping rates studied, we find that a finite density of states appears at the Fermi level, which predicts a metallic behavior of this material. Detailed electronic structure reveals all the essential properties of the electride model. The shift of Fermi level and the delocalization of the highest occupied bands cause this material to be a powerful reducing agent.  相似文献   

15.
《Solid State Sciences》2012,14(5):567-573
A single wurtzite phase of cadmium sulfide cluster is investigated by ab-initio molecular dynamics simulations at different temperatures, ranging from 100 K to 600 K. In this study we propose a possible procedure to characterize the CdS quantum dots system by means of molecular dynamics calculations using a standard Car-Parrinello scheme. In order to ensure the accuracy of the numerical approach, preliminary calculations to test pseudopotentials, cutoff and box size on both single atoms systems and Cd–Cd, S–S, Cd–S dimers have been performed. Calculated binding energies and bond lengths are obtained in good agreement with experimental data. Subsequently, an uncapped CdS cluster with size below 2 nm, 48 atoms of cadmium and 48 atoms of sulfur, in a wurtzite geometry was structurally optimized to minimize internal stresses. The CdS cluster has been carefully characterized structurally at several temperatures up to T = 600 K. At the temperature of 340 K atomic diffusion on the surface allows the onset of a new stable atomic configuration.  相似文献   

16.
Structural stability and electronic properties of GaX (X = N, P, As and Sb) nanowires have been investigated using first-principles based density function theory approach. Out of linear, zigzag, square and hexagon shaped configuration, the square shaped geometry is energetically most stable. The computation of lattice parameters, bulk modulus and pressure derivatives for these Ga based nanowires observes the highest bulk modulus for hexagonal shaped GaN nanowire amongst all, suggest the mechanical strength of this geometry. Electronic band structures analysis shows the semiconducting as well as metallic behavior of these nanowires.  相似文献   

17.
We present the results of ab-initio molecular dynamics studies of selected microclusters of sodium, silicon and magnesium at finite temperatures, and especially discuss those obtained around room temperature. In particular, from the analysis of the atomic trajectories we can identify in some cases the existence of different isomers and the isomerization pathways. We have also calculated vibrational spectra at low temperatures and find that they can be used as a very sensitive structural probe also in sodium clusters, where the electronic properties are quite insensitive to the geometry.  相似文献   

18.
Density-functional calculation within local density approximation, shows that the electronic property of a barium oxide cluster is strongly correlated with its equilibrium structure. The ground-state structures of BanOm (4 < or = n < or = 9,m < or = n) clusters can be classified into four categories: (a) compact, (b) dangling state, (c) F-center, and (d) stoichiometric. The compact cluster is metallic, almost no energy gap exists between the highest occupied and the lowest unoccupied molecular orbitals. The energy gap for the dangling state cluster is larger than that for the F-center cluster, while the stoichiometric cluster has the largest energy gap.  相似文献   

19.
The results of MNDO geometry optimizations on selected H? (SiH2)n? H polysilane model compounds are presented. Near energetic degeneracy is indicated for all-trans(T), alternating gauchetrans (GT), and all-gauche (G+G+) models (n = 10). The most stable (T) and least stable (G+G+) conformations are separated by only ca. 0.11 eV. The existence of low-energy barriers to moderate structural distortion is also suggested. Orbital localizations and charge density distributions along the “polymer” backbone are found to be sensitive functions of such distortion. The ground-state electronic distribution of the saturated all-trans silane chains are calculated to be considerably more polarizable than the fully conjugated H? (CH)n? H π-electron framework of comparable length. The one-electron HOMO → LUMO excitation can be viewed essentially as an in-plane Si 3p → Si3s + H1s intramolecular charge transfer transition. The qualitatively different atomic orbital character of the HOMO and LUMO levels yields transition moment components for the separate repeat units which are relatively small. In the case of the rigidly trans conformation, the phase relationships of the transition moment terms are such as to constructively sum to a large net value reflecting strong optical absorption, as is observed experimentally.  相似文献   

20.
Fluorinated anti-fluorenacenedione 6 was newly synthesized by oxidation of a dehydro[12]annulene fused with tetrafluorobenzene 4. X-Ray crystallography of 6 demonstrated a totally planar structure and shorter intramolecular distances for F ... I, F ... O, and I ... O than the corresponding sums of van der Waals (vdW) radii. In the packing structure, molecules are arranged in a pi-stacked motif, and the intermolecular distances between heavy atoms (C ... I, C ... F, C ... O, F ... I, and F ... O) of the adjacent columns are also shorter than the corresponding sums of vdW radii, indicating highly dense packing for the crystal structure of 6. In the 19F NMR spectrum of 6, a signal for the fluorine atom adjacent to iodine exhibited downfield shift by 29-40 ppm as compared with the other three signals. This is attributed to the intramolecular short contact between F and I atoms, which is supposed to cause a donor-acceptor interaction. Cyclic voltammetry of 6 exhibited two reversible reduction waves at E1/2 = -0.91 and -1.45 V vs. Fc/Fc+. A thin film of 6 was prepared by vacuum deposition and was applied to a field-effect transistor (FET) device, which exhibited n-type transistor responses although the mobility was not very high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号