首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The stability, structural parameters, elastic constants, electronic and optical properties of perovskites CsCaH3 and RbCaH3 were investigated by the density functional theory. The calculated lattice parameters are in agreement with previous calculation and experimental data. The energy band structures, density of states, born-effective-charge and Mulliken charge population were obtained. The perovskites CsCaH3 and RbCaH3 present a direct band gap of 3.15 eV and 3.27 eV at equilibrium. The top of the valence bands reflects the s electronic character for both structures. Furthermore, the absorption spectrum, refractive index, extinction coefficient, reflectivity, energy-loss spectrum, and dielectric function were calculated. The origin of the spectral peaks was interpreted based on the electronic structures. The static dielectric constant and refractive index are indeed, inverse proportional to the direct band gap.  相似文献   

2.
《Solid State Sciences》2012,14(7):903-913
Some physical properties of the cubic perovskites CsXF3 (X = Ca, Sr and Hg) have been investigated using pseudopotential plane-wave method based on the density functional theory. The calculated lattice parameters within GGA and LDA agree reasonably with the available experimental data. The elastic constants and their pressure derivatives are predicted using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus, Poisson's ratio and Lamé’s constants for ideal polycrystalline aggregates. The analysis of B/G ratio indicates that CsXF3 (X = Ca, Sr and Hg) are ductile materials. The thermal effect on the volume, bulk modulus, heat capacity and Debye temperature was predicted.  相似文献   

3.
A. Bouhemadou   《Solid State Sciences》2009,11(11):1875-1881
Based on first-principles total energy calculations, we have investigated the systematic trends for structural, electronic and elastic properties of the MAX phases M2GaN depending on the type of M transition metal (M are Ti, V and Cr). The optimized zero pressure geometrical parameters: the two unit cell lengths (a, c), the internal coordinate z and the bulk modulus are calculated. The results for the lattice constants are in agreement with the available experimental data. The band structures show that all studied materials are electrical conductors. The analysis of the site-projected l-decomposed density of states shows that bonding is due to M d-N p and M d-Ga p hybridizations. The elastic constants are calculated using the static finite strain technique. The shear modulus C44, which is directly related to the hardness, reaches its maximum when the valence electron concentration is in the range 10.5–11.0. The isotropic elastic moduli, namely, bulk modulus (B), shear modulus (G), Young's modulus (E) and Poisson's ratio (σ) are calculated in framework of the Voigt–Reuss–Hill approximation for ideal polycrystalline M2GaN aggregates. We estimated the Debye temperature of M2GaN from the average sound velocity. This is the first quantitative theoretical prediction of the electronic structures, and elastic constants and related properties for Ti2GaN, V2GaN and Cr2GaN compounds that require experimental confirmation.  相似文献   

4.
The PLANE WAVE pseudo-potential method within density functional theory (DFT) has been used to investigate the structural, elastic, electronic and optical properties of XCaF3 (X = K and Rb) insulating. The studied compounds show a weak resistance to shear deformation compared to the resistance to the unidirectional compression. KCaF3 and RbCaF3 are considered ductile. The elastic constants and related parameters were predicted. The stiffness is more important in KCaF3, whereas, the lateral expansion is more important in RbCaF3. KCaF3 and RbCaF3 have R- Г indirect band gap. The main peaks in the imaginary part of the dielectric function correspond to the transition from the occupied state Fp to the unoccupied states Ca: s or K, Rb: p. At lower energies, KCaF3 and RbCaF3 show the same optical properties. Under pressure effect, the peaks of imaginary part of dielectric function were shifted toward high energy.  相似文献   

5.
The high-pressure structures and properties of MH2 (M = Nb, Ta) are explored through an ab initio evolutionary algorithm for crystal structure prediction and first-principles calculations. It is found that NbH2 undergoes a phase transition from a cubic Fm3¯m structure with regular NbH8 cubes to an orthorhombic Pnma structure with fascinating distorted NbH9 tetrakaidecahedrons at 48.8 GPa, while the phase transition pressure of TaH2 from a hexagonal P63mc phase with slightly distorted TaH7 decahedron to an orthorhombic Pnma phase with attractive distorted TaH9 tetrakaidecahedrons is about 90.0 GPa. Besides, the calculated electronic band structure and density of states demonstrate that all of these structures are metallic. The Poisson’s ratio, electron localization function, and Bader charge analysis suggest that these phases possess dominant ionic bonding character with the effective charges transferring from the metal atom to H. From our electron–phonon calculations, the calculated superconducting critical temperature Tc of the Pnma-NbH2 is 6.903 K at 50 GPa. Finally, via the quasi-harmonic approximation method, the phase diagrams at pressure up to 300 GPa and temperature up to 1000 K of MH2 (M = Nb, Ta) are established, where the transition pressure of Fm3¯m-NbH2 → Pnma-NbH2 and P63mc-TaH2 → Pnma-TaH2 were found to decrease with increasing temperature.  相似文献   

6.
7.
《Solid State Sciences》2012,14(5):583-586
First-principles calculations have been carried out to investigate the structural, mechanic and electronic of transition metal hydrides MH2 (M = Ti, Zr, Hf, Sc, Y, La, V and Cr). It is found that TiH2 is mechanically unstable because of a negative C44 = −21.31 GPa and C11C12 < 0, the same behavior can be found in MH2 (M = Zr, Hf, and Y) compounds. Also there is a strong interaction between M (Ti, Zr, Hf, Sc, Y, La, V and Cr) and H. On the other hand, the H–H bond orders are always negative or nil reason of brittleness.  相似文献   

8.
《Solid State Sciences》2012,14(8):1004-1011
The structural, electronic, elastic and thermal properties of YX (X = Cd, In, Au, Hg and Tl) intermetallic compounds crystallizing in B2-type structure have been studied using first principles density functional theory within generalized gradient approximation (GGA) for the exchange correlation potential. Amongst all the YX compounds, YIn is stable in distorted tetragonal (P4/mmm) CuAu-type structure at ambient pressure with very small energy difference of 0.00681 Ry. but it undergoes to CsCl-type (B2 phase) structure at 23.3 GPa. Rest of the compounds are stable in B2 structure at ambient condition. The values of elastic moduli as a function of pressure are also reported. The ductility of these compounds has been analyzed using the Pugh rule. Our calculated results indicate that YTl is the most ductile amongst all the B2-YX compounds. YAu is the hardest and less compressible compound due to the largest bulk modulus. The elastic properties such as Young's modulus (E), Poisson's ratio (σ) and anisotropic ratio (A) are also predicted. The anisotropic factor is found to be unity for YHg which shows that this compound is isotropic.  相似文献   

9.
Using first-principles technique, the crystal structure of cementite-type Fe3N is predicted. The average magnetic moment (Ms) of cementite-type Fe3N is also predicted as 1.4929 μB/atom. The Ms of Fe3N is bigger than that of Fe3C, but smaller than that of Fe3B. Fe Ms between two different Fe sites in Fe3N are different (2.0541 and 2.0139 μB), which indicates that Fe Ms are sensitive to the local short-range order in the cementite-type crystal. The Ms of B, C and N are ?0.3525, ?0.2474 and ?0.1102 μB/atom in Fe3X (X = B, C, N), respectively. The chemical bonds of Fe3X (X = B, C, N) take on metallicity, covalence, and ionicity. The ionicity of Fe3X (X = B, C, N) strengthens and the covalence of Fe–X weakens, going from Fe3B, Fe3C to Fe3N.  相似文献   

10.
Chemisorption of Furan on the surfaces of four different semiconductors (Al12N12, Al12P12, B12N12, and B12P12) has been investigated, and the results have been compared using density functional theory in terms of energetic, geometric, and electronic property. Two functionals, dispersion corrected (wB97XD) and non‐corrected (B3LYP), have been used for calculation of binding energy. The results show that chemisorption of Furan on these semiconductors is in the order of Al12N12 (−98.4 kJ mol−1) > Al12P12 (−77.5 kJ mol−1) > B12N12 (−46.6 kJ mol−1) > B12P12 (−18.3 kJ mol−1), while the order of change in the HOMO–LUMO gap of semiconductors upon adsorption of Furan is found as B12N12 > B12P12 > Al12P12 > Al12N12, which implies to the higher changes in the electronic structure of B‐containing clusters (B12N12 and B12P12) compared to Al‐containing clusters (Al12N12 and Al12P12). The NBO charge analyses reveal maximum and minimum charge transfer upon adsorption of Furan on B12N12 and B12P12, respectively. Based on the results, it was found that Al12N12 and B12N12 as the most appropriate adsorbent and the most sensitive sensor for Furan, respectively.  相似文献   

11.
The compounds RuL2HX, where L = PiPr3 and X = Cl or N(SiMe3)2, are catalyst precursors for dimerization of terminal alkynes to enynes and also to cumulenes at 23 °C; selectivity among these products is X-dependent, but not high. Conversion of Ru species onto the catalytic cycle was undetectably small, so alternative approaches to understanding the catalytic mechanism were employed: stoichiometric reactions, independent synthesis of candidate intermediates, and trapping with CO. These show the intermediacy of vinylidenes and vinyl compounds, and reveal conversion of cumulenes to the thermodynamically more stable enynes.  相似文献   

12.
Two novel organic–inorganic hybrid polyoxometalates, (X = P, m = 1 1; X = Si, m = 2 2; 2,2′-bpy = 2,2′-bpyridine), have been synthesized under hydrothermal conditions and structurally characterized by single-crystal X-ray diffraction. They are isostructural, possessing orthorhombic, and the parameters of unit cells for compound 1 are space group Pbca, a = 17.317(4) Å, b = 17.092(3) Å, c = 20.587(4) Å, V = 6445(2) Å3, Z = 4; for compound 2 are space group Pcab, a = 17.181(3) Å, b = 18.198(4) Å, c = 20.672(4) Å, V = 6463(2) Å3, Z = 4. The two compounds show a layer framework constructed from Keggin-polyoxoanion clusters and [Cu (2, 2′-bpy)2]2+ coordination polymer fragments via weak covalent interactions, resulting in a 3D network via supramolecular interactions. Their electrochemical properties are studied in detail.  相似文献   

13.
Highly crystalline niobium- and tantalum-based oxynitride perovskite nanoparticles were obtained from hydrothermally synthesized oxide precursors by thermal ammonolysis at different temperatures. The samples were studied with respect to their morphological, optical and thermal properties as well as their photocatalytic activity in the decomposition of methyl orange. Phase pure oxynitrides were obtained at rather low ammonolysis temperatures between 740 °C (CaNbO2N) and 1000 °C (BaTaO2N). Particle sizes were found to be in the range 27 nm–146 nm and large specific surface areas up to 37 m2 g−1 were observed. High photocatalytic activities were found for CaNbO2N and SrNbO2N prepared at low ammonolysis temperatures. CoOx as co-catalyst was loaded on the oxynitride particles resulting in a strong increase of the photocatalytic activities up to 30% methyl orange degradation within 3 h for SrNbO2N:CoOx.  相似文献   

14.
A series of triethylammonium halides (Et3NHCl, Et3NHBr, and Et3NHI) was synthesized. The crystal structures of the three compounds were characterized by X-ray crystallography. The lattice potential energies and ionic radius of the common cation of the three compounds were obtained from crystallographic data. Molar enthalpies of dissolution of the compounds at various values of molality were measured in the double-distilled water at T = 298.150 K by means of an isoperibol solution-reaction calorimeter. According to Pitzer’s theory, the values of molar enthalpies of dissolution at infinite dilution and Pitzer’s parameters of the compounds were obtained. The values of apparent relative molar enthalpies, relative partial molar enthalpies of the solvent and the compounds at different molalities were derived from the experimental values of molar enthalpies of dissolution of the compounds. Finally, hydration enthalpy of the common cation Et3NH+ was calculated to be ΔH+ = ?(150.386 ± 4.071) kJ · mol?1 by designing a thermochemical cycle.  相似文献   

15.
The structural, elastic, mechanical, electronic, optical properties and effective masses of CuMIIIBO2 (MIIIB = Sc, Y, La) compounds have been investigated by the plane-wave ultrasoft pseudopotential technique based on the first-principles density-functional theory under local density approximation. The equilibrium structural parameters are in good agreement with previous experimental and theoretical data. To our knowledge, there are no available data of elastic constants for comparison. The bulk, shear and Young's modulus, ratio of B/G, Poisson's ratio and Lamé's constants of CuMIIIBO2 have been studied. The electronic structures of CuMIIIBO2 are consistent with other calculations. The population analysis, charge densities and effective masses have been shown and analyzed. The imaginary and real parts of the dielectric function, refractive index and extinction coefficient of CuMIIIBO2 are calculated. The interband transitions to absorption of CuMIIIBO2 have been analyzed.  相似文献   

16.
Theoretical calculations were carried out on some neutral nest-shaped heterothiometallic cluster compounds [MOS3Py5Cu3X] (M = Mo, W; X = F, Cl, Br, I) with the high first static hyperpolarizabilities β values. The geometries of these cluster compounds were optimized by the restricted DFT method at B3LYP level with LanL2DZ base set without any constrains. In order to understand the relationship between the first static hyperpolarizabilities and the compositions of these clusters, the frontier orbital compositions and energy gaps between the HOMO and LUMO orbitals were calculated and analysed. In these clusters the HOMO orbitals are mainly composed of halogen atoms and the first static hyperpolarizability increases from F to I atom. The LUMO orbitals of clusters [MoOS3Py5Cu3X] are comprised of Mo, O and S atoms while the LUMO orbitals of clusters [WOS3Py5Cu3X] composed of W atom and pyridine ring. The energy gaps between the HOMO and LUMO orbitals of the clusters [MoOS3Py5Cu3X] are smaller than those of the clusters [WOS3Py5Cu3X]. As a result the first static hyperpolarizability values of the clusters [MoOS3Py5Cu3X] are higher than those of the clusters [WOS3Py5Cu3X].  相似文献   

17.
《Solid State Sciences》2007,9(2):166-172
We have performed accurate ab initio total energy calculations using the full-potential linearized augmented plane wave (FP-LAPW) method to investigate the structural and electronic properties of copper-transition metal nitrides. In its ground state, Cu3N crystallizes in an anti-ReO3 type cell and it is a semiconductor material with a small indirect gap. In this paper, we report a study of Cu3MN compounds with M = Ni, Cu, Zn, Pd, Ag, and Cd. In the calculations, we have used the same anti-ReO3 type cell of Cu3N, but with the extra transition metal atom at the center of the cube. In particular, our calculated lattice parameters for copper nitride (a = 3.82 Å) and copper palladium nitride (a = 3.89 Å) are in excellent agreement with the experimental values of a = 3.807 Å and a = 3.86 Å, respectively. In all the cases we have studied, the addition of the transition metal atom modifies the electronic structure of Cu3N, turning all copper-transition metal nitrides into metals.  相似文献   

18.
19.
The chemical bonding and elastic properties as well as the effect of atomic radii for A element in the Ti3AC2 phases (A = Si, Ge, and Sn) were studied by ab initio total energy calculations using plane-wave pseudopotential method based on DFT. The atomic radii of A element has a weak effect on the electronic structure. However, the bond stiffness was quantitatively examined, which shows that the bond stiffness is affected by the atomic radii of A element. The calculated results including lattice constants, internal coordinate, elastic modulus, sound velocity, and Debye temperature agree with experimental values very well. With the increase of atomic radii of A element from Si, Ge to Sn, the cohesive energy and elastic moduli as well as Debye temperature decrease, but the elastic anisotropy increases. This is related to the change of bond stiffness. It can be predicted that the fracture toughness of Ti3SnC2 would be comparable with that of Ti3SiC2 and Ti3GeC2.  相似文献   

20.
The haptotropic migration of Cr(CO)3, Mo(CO)3 and W(CO)3 moieties on a substituted phenanthrene has been studied theoretically using gradient-corrected density functional theory. The stationary points (minima and transition states) on the energy hypersurface characterizing the migrating process of the metal fragment over the aromatic system have been located. Furthermore, the energetic and structural differences between complexes of the three metals Cr, Mo and W and the effect of a high substitution of one arene ring on the reaction energy profile have been analyzed. The possibility to design a molecular switch based on the substituent pair R = O/OH is investigated. It is concluded that the Mo and W complexes undergo a haptotropic migration more easily than the corresponding Cr system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号