首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to improve the cutting quality, a dual-laser-beam method was proposed to cut glass substrates in the current study, where a focused CO2-laser beam was used to scribe a straight line on the substrate, and a defocused CO2-laser beam was used to irradiate on the scribing line to generate a tensile stress and separate the substrate. The finite-element-method (FEM) software ANSYS was applied to calculate the temperature distribution and the resulting thermal stress filed. Through experimental study, it concluded that the glass substrate can be separated along an expected path with dual-laser beams and the cutting quality can be improved comparing with the cutting using a defocused laser beam alone. The relation between the cutting speed and the defocused laser power was also investigated in cutting glass with this method.  相似文献   

2.
In the laser cleaving of brittle materials, using controlled fracture technique, thermal stresses are used to induce the crack and the material is separated along the cutting path by extending the crack. One of the problems in laser cutting of glass with this technique is the cut path deviation at the leading and the trailing edges of the glass sheet. Previous work has shown this deviation to be partly due to the high magnitudes of thermal stresses generated near the edges of the sheet. This paper reports on the experimental results of the effects of glass thickness, laser power and the cutting speed on cut path deviation in diode laser cutting of glass. Finite element modelling of the cutting process has also been used to simulate the transient effects of the moving beam and predict thermal fields and stress distributions. These predictions are validated against the experimental data and are used to explain the process mechanisms. It is shown that an increase in the thickness of the glass sheet for the same power and cutting speed or an increase in the cutting speed with constant power and a given sheet thickness results in smaller cut path deviations at the leading and trailing edges of the glass sheet.  相似文献   

3.
Laser cutting of glass using the controlled fracture technique leads to cut path deviation at the leading and trailing edges of the float glass sheet. In this technique, thermal stresses are used to induce the crack, and the material is separated along the cutting path by extending the crack. We show that the cut path deviation is partly due to high magnitudes of thermal stresses generated near the sheet edges. The absorption of intense radiation from the CO2 and diode laser beams in the glass causes local temperature increases and consequently generates different thermal fields and stress distributions due to surface and volumetric heat absorption. In this paper, we report the effect of the CO2 and diode laser wavelength interaction with the float glass and its effect on the magnitudes of thermal stresses generated near the edges of the glass sheet. We simulate the distribution of the thermal stress and temperature using finite-element analysis software Abaqus and validate it against the experimental data. We show that the CO2 laser produces a lower surface quality and a larger cut path deviation at the leading and trailing edges of the glass sheet as compared to the diode laser.  相似文献   

4.
This paper presents a comparison of theoretically-predicted optimum cutting speeds for decorative ceramic tile with experimentally-derived data. Four well-established theoretical analyses are considered and applied to the laser cutting of ceramic tile, i.e. Rosenthal's moving point heat-source model and the heat balance approaches of Powell, Steen and Chryssolouris. The theoretical results are subsequently compared and contrasted with actual cutting data taken from an existing laser machining database. Empirical models developed by the author are described which have been successfully used to predict cutting speeds for various thicknesses of ceramic tile.  相似文献   

5.
A CO2 laser with a line-shape beam was used to cleave a soda-lime glass substrate at various beam-rotation angles to the cutting direction. The stress distribution on the glass substrate cleaved by the laser beam has been analyzed in this study. An uncoupled thermal-elastic analysis was achieved by the ABAQUS software based on the finite element method. The numerical results show that the stress field of the fracture is caused by a complex stress state and the cleavages are significantly affected by the heat diffusion and beam rotation angle. At the rotation angle of zero degree to the cleaving direction, the phenomena of the chip formation have been found due to a large temperature gradient at the cleaving depth of the glass substrate.  相似文献   

6.
In laser cleaving of brittle materials using controlled fracture technique, thermal stresses are used to induce a crack and the material is separated along the cutting path by extending this crack. In this study, a glass sheet is stressed thermally using a 808-940 nm diode laser radiation. One of the problems in laser cutting of glass with controlled fracture technique is the cut deviation at the leading and the trailing edges of the glass sheet. In order to avoid this damage it is necessary to understand the stress distributions which control crack propagation. A study is conducted here to analyse the cut deviation problem of glass by examining the stress fields during diode laser cutting of soda-lime glass sheets. Optical microscope photographs of the breaking surface are obtained to examine the surface quality and cut path deviation while the latter is explained from the results of the stress fields which are obtained from a finite element simulation.  相似文献   

7.
The mechanical properties of NiTi shape memory alloy (SMA) components are sensitive to thermal influence during laser machining. To make the femtosecond laser cutting of NiTi material meet the strict fabrication requirements for miniature SMA devices with high precision, complex patterns and minimal heat affected zone (HAZ) along with high throughput, we report an optimal process of sideways-movement path planning in this article. Femtosecond laser processing of NiTi SMA using the fundamental wavelength of 775 nm from a Ti:sapphire laser along with its second and third harmonic irradiations were systematically investigated. We observed that the main impact of ultrashort laser pulse induced air breakdown on materials processing was beam widening. The laser beam at fundamental wavelength suffered less widening than its harmonic wavelengths. Femtosecond laser machining of metals is still basically a thermal mechanism. High ablation rates at higher laser fluences causes significant recast formation, while lower fluences resulted in better cutting quality at the expense of efficiency. The optimal process involving the method of sideways-movement path planning enables recast-free high-precision features at higher laser fluences with better throughput.  相似文献   

8.
吴迪  王续跃 《中国光学》2016,9(5):554-562
本文设计了一套加工装置,对氧化锆陶瓷板激光切割的熔化物颗粒进行收集,并采用Imagine-Pro Pluse(IPP)图像处理软件对熔化物颗粒的形态(数量、形状、平均直径、标准差及其分布情况)进行研究。通过气熔比控制方法,对板厚分别为0.8 mm、1 mm、1.5 mm、3 mm的氧化锆陶瓷板进行激光切割实验。实验结果表明:不同板厚参数下,球形熔化物颗粒所占百分比范围从99.21%降到89.81%,圆饼形从0.79%升至7.44%,哑铃形从0升至2.75%。随着板厚的增加,圆饼形和哑铃形颗粒所占百分比增大,球形颗粒所占百分比降低,球形颗粒平均直径和标准差随之增大,切面粗糙度由2.287μm增加到5.946μm。建立了熔化物去除几何模型,阐述了熔化物颗粒与切割质量的关系,球形颗粒所占的百分比越大,平均直径和标准差越小,切割质量越好,最终获得质量较高切割样件。  相似文献   

9.
This paper reports the study of optimal laser parameters for cutting QFN (Quad Flat No-lead) packages by using a diode pumped solid-state laser system (DPSSL). The QFN cutting path includes two different materials, which are the encapsulated epoxy and a copper lead frame substrate. The Taguchi's experimental method with orthogonal array of L9(34) is employed to obtain optimal combinatorial parameters. A quantified mechanism was proposed for examining the laser cutting quality of a QFN package. The influences of the various factors such as laser current, laser frequency, and cutting speed on the laser cutting quality is also examined. From the experimental results, the factors on the cutting quality in the order of decreasing significance are found to be (a) laser frequency, (b) cutting speed, and (c) laser driving current. The optimal parameters were obtained at the laser frequency of 2 kHz, the cutting speed of 2 mm/s, and the driving current of 29 A. Besides identifying this sequence of dominance, matrix experiment also determines the best level for each control factor. The verification experiment confirms that the application of laser cutting technology to QFN is very successfully by using the optimal laser parameters predicted from matrix experiments.  相似文献   

10.
Applying a ceramic coating onto a metallic substrate to improve its wear resistance or corrosion resistance has attracted the interest of many researchers during decades. However, only few works explore the possibility to apply a metallic layer onto a ceramic material. This work presents a novel technique to coat ceramic materials with metals: the supersonic laser spraying.In this technique a laser beam is focused on the surface of the precursor metal in such a way that the metal is transformed to the liquid state in the beam-metal interaction zone. A supersonic jet expels the molten material and propels it to the surface of the ceramic substrate.In this study, we present the preliminary results obtained using the supersonic laser spray to coat a commercial cordierite ceramic plate with an Al-Cu alloy using a 3.5 kW CO2 laser and a supersonic jet of Argon.Coatings were characterized by scanning electron microscopy (SEM) and interferometric profilometry.  相似文献   

11.
Laser cleaving on glass sheets with multiple laser beams   总被引:1,自引:1,他引:0  
A multiple laser system consisting of CO2 line-shaped and Nd-YAG pulsed lasers was applied to cleave a soda-lime glass substrate in this study. Due to an increase of absorption coefficient of the wavelength of 1.06 μm for Nd-YAG laser on the soda-lime glass at high temperatures, the glass sheets were preheated by the CO2 line-shaped laser and followed with the pulsed Nd-YAG laser to generate a mixture fracture mode on the substrate. The stress distribution on the glass substrate cleaved by the multiple laser beams has been analyzed. An uncoupled thermal–elastic analysis based on the finite-element method (FEM) was made. The numerical results show that the stress field of the fracture region is caused by a complex stress state and the cleavages are significantly affected by the pulsed laser. A clean cut of the soda-lime glass substrate could be obtained due to a large shear stress state on the cutting direction with the pulsed laser radiated on the glass substrate.  相似文献   

12.
为了研究影响飞秒激光烧蚀0Cr18Ni9不锈钢精度的因素,采用飞秒激光对0Cr18Ni9不锈钢进行了切割和打孔实验。利用光学显微镜、光学金相显微镜等设备,对不锈钢烧蚀区形貌和切缝显微组织进行检测,基于烧蚀过程中CCD实时采集到的不锈钢表面的激光光斑图样,采用COMSOL Multiphysic数值模拟软件,模拟了烧蚀过程中激光束的发散传播行为,并计算了光束发散角。结果表明:当激光重复频率为5kHz时,厚度为160μm的0Cr18Ni9不锈钢切缝和孔边缘被明显烧黑,切缝处晶粒明显长大,存在热影响区;烧蚀过程中,由飞秒激光超高功率密度所致的金属-空气混合等离子体使光束沿传播方向上发生散射,发散角在6°~10°之间。热影响区的存在和混合等离子体的行为是影响飞秒激光烧蚀0Cr18Ni9不锈钢精度的主要因素。  相似文献   

13.
为了研究影响飞秒激光烧蚀0Cr18Ni9不锈钢精度的因素,采用飞秒激光对0Cr18Ni9不锈钢进行了切割和打孔实验。利用光学显微镜、光学金相显微镜等设备,对不锈钢烧蚀区形貌和切缝显微组织进行检测,基于烧蚀过程中CCD实时采集到的不锈钢表面的激光光斑图样,采用COMSOL Multiphysic数值模拟软件,模拟了烧蚀过程中激光束的发散传播行为,并计算了光束发散角。结果表明:当激光重复频率为5 kHz时,厚度为160 m的0Cr18Ni9不锈钢切缝和孔边缘被明显烧黑,切缝处晶粒明显长大,存在热影响区;烧蚀过程中,由飞秒激光超高功率密度所致的金属-空气混合等离子体使光束沿传播方向上发生散射,发散角在6~10之间。热影响区的存在和混合等离子体的行为是影响飞秒激光烧蚀0Cr18Ni9不锈钢精度的主要因素。  相似文献   

14.
Mullite-alumina is an advanced ceramic with great importance in the construction of structural elements for high temperature applications. The inherent properties of this material such as its very high hardness and brittleness make conventional machining a very hard task, being slow, noisy and poor productive.In this paper we present the results of the work carried out to investigate the influence of different cutting parameters on the laser cut quality. Specifically, a detailed study of the characteristics of the heat affected zone (HAZ) is presented as a function of average laser power, cutting speed, assist gas pressure and pulse frequency. Quantitative analysis of the HAZ characteristics was performed by means of analytical image processing of dimensional magnitudes easily identified in the optical microscopy images.  相似文献   

15.
Laser produced plume, consisting of vapor front and ejected substrate on the workpiece surface, is an intermediate between the incident laser beam and the workpiece on which the beam is directed. It partially blocks, defocuses, absorbs, scatters, and deflects the incident beam and thereby reduces the laser energy reaching the workpiece. However, plume additionally acts as a heat source enhancing the machining. Consequently, laser induced plume plays an important role in laser machining process. The present study investigates the transmittance of a reference beam by the plume generated during the laser-workpiece interaction. To achieve the transmittance measurements, a Nd:YAG laser was used and four different materials were employed in the experiment. To obtain realistic values of the plume transmittance in relation to the laser machining process, the reference beam was sampled from the incident laser beam. The study was extended to include the effect of the laser pulse parameters on the transmission process. It is found that about 10–30% of the transmittance of the reference beam through a vapor plume, produced due to laser ablation, occurs close to the workpiece surface.  相似文献   

16.
UV laser microdrilling of high-aspect-ratio holes has been studied by using an intense beam with a low numerical aperture (KrF laser). The UV laser ablation produces a minimum of thermal or mechanical damage on the target. Under some particular experimental conditions (many high-fluence pulses), it is shown that long deep holes are obtained with reproducible aspect ratio (up to K/d길) in a variety of materials. Experiments with polymers (PMMA, PC, PET, PI, PS, PEEK) show that the more absorbing the polymer is, the better the resolution. However highly absorbing materials exhibit a low ablation rate. These promising results on laser microdrilling can be extended to new applications, for example, when the beam/target relative movement is computer driven. For instance this approach can be applied to cutting micro-objects with complicated shape or to machining fragile or brittle materials.  相似文献   

17.
This paper concentrates on the mechanical performance of various ceramic coatings of Cr2O3 on steel (SAF2205), as produced by CO2 laser processing. The thickness of the coating that can be applied by laser coating is limited to about 200 m setting a limit to the maximum strain energy release rate that can be measured in a 4 point flexure test before severe yielding occurs. In addition, a network of cracks with spacings of the order of 200 m was always present in the laser applied coating preventing steady state crack growth along the interface.It is concluded that a firmly bonded coating of Cr2O3 on steel could be produced by high power laser processing. The actual interface strength of a (Fe, Cr)-spinel applied to stainless steel by laser coating depends strongly on the composition of the substrate and coating materials. The energy release rate was extremely high and delamination occurred by fracture through the coating and partially along the interface, indicating that the interface strength is similar to or higher than the fracture strength of (Fe, Cr)-spinel.  相似文献   

18.
New experimental results in support of the universal mechanism of “cold” laser ablation for machining of various commercial green ceramic materials (LTCC) are presented in this paper. The “cold” ablation model was mathematically formulated and employed to derive an ablation curve equation. The model was tested by CO2 laser ablation of a custom-made green-state alumina ceramic featuring varying binder content. An excellent fit of ablation curve to experimental data was obtained, yielding insight into process energetics and an ablative measurement method of absorption coefficient. The analysis was applied to a sample of commercial LTCC materials. The ablation results were practically identical for all materials in agreement with the prediction of the model, with the high rates of >100 micron/shot at repetition >1 kHz and accuracy comparable with the ceramic grain size. This work provides evidence that the CO2 laser processing has a great potential to become a key low-cost precision processing method for the existing LTCC-based electronic devices (micro-via drilling, general cutting and scribing) and for the new generation of LTCC-based devices comprising micro-fluidics, micro-mechanics, opto-electronics and meta-material structures.  相似文献   

19.
A high-power continuous CO2 laser (4 kW) can provide energy capable of causing melting or even, with a special treatment of the surface, vaporization of an XC42-steel sample. The laser–metal interaction causes an energetic machining mechanism, which takes place according to the assumption that the melting front precedes the laser beam, such that the laser beam interacts with a preheated surface whose temperature is near the melting point. The proposed model, obtained from the energy balance during the interaction time, concerns the case of machining with an inert gas jet and permits the calculation of the characteristic parameters of the groove according to the characteristic laser parameters (absorbed laser energy and impact diameter of the laser beam) and allows the estimation of the quantity of the energy causing the thermal affected zone (TAZ). This energy is equivalent to the heat quantity that must be injected in the heat propagation equation. In the case of a semi-infinite medium with fusion temperature at the surface, the resolution of the heat propagation equation gives access to the width of the TAZ.  相似文献   

20.
Femtosecond laser surface processing of materials allows for precise micro or sub-micrometer machining with restricted detrimental side effects. Thus, fine control of the laser intensity distribution (repeatability) in the processing plane is of outmost importance for industrial implementation. In this paper, we study the influence on non-linear effects on the machining quality. We experimentally study the profiles of cavities machined at the image plane of a focused femtosecond laser for a large set of fluences on stainless steel below the critical power. A strong distortion of the cavities is observed for high energetic levels. A beam analysis performed in the machining conditions reveals that the cavity profile follows the laser beam profile even at high fluences where the beam undergoes an increasing distortion. Numerical calculations of the laser beam distribution taking a Kerr effect into account are presented showing a good agreement with the experimental laser profile. To counteract the beam distortion at high fluences, we propose and successfully employ a robust solution consisting in geometrically forming the image processing plane before the laser focusing point. This ensures a beam profile free of distortion even at high fluences. Experimental evidence is made, showing a significant quality increase of the cavity profiles with an image plane placed before the focus point.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号