首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The “ground state” proposal for the quantum state of the universe is generalized to the case of a noncompact spacelike three-hyperboloid as the configuration space. The most probable evolution of the universe must come from a gravitational instanton by quantum tunneling. We show that under some minisuperspace ansatz, there exists only S4 × S7 gravitational instanton in d = 11 supergravity. From the point of view of quantum cosmology this fact must be related to the fact that our observed spacetime is four-dimensional.  相似文献   

3.
By matching across a surface of constant time, it is demonstrated that the spacetime for a radiation-dominated Einstein–de Sitter universe can be directly matched to the spacetime for a matter-dominated Einstein–de Sitter universe. Thus, this can serve as a model of a universe filled with radiation that suddenly is converted to matter and antimatter, or a universe filled with matter and antimatter that suddenly annihilates to leave radiation. This matching is shown to hold for asymptotically Einstein–de Sitter cosmological black hole spacetimes, yielding simplistic models of primordial black holes that evolve between being in radiation-dominated universes and matter-dominated universes.  相似文献   

4.
An alternative inflationary model is proposed predicated upon a considerationof the form of the uncertainty principle in a curved background spacetime. Anargument is presented suggesting a possible curvature dependence in the correctcommutator relations for a quantum field in a classical background which cannotbe deduced simply by extrapolation from the flat spacetime theory. To assess thepossible consequences of this dependence, we apply the idea to a scalar field ina closed Friedmann-Robertson-Walker background, using a simple model forthe curvature dependence (along the way, a previous erroneous result obtainedby Bunch for the adiabatically expanded wave function is corrected). The resultis a time-dependent cosmological constant, producing a vast amount of inflationthat is independent of either the mass of the matter field or its effectivepotential.Furthermore, it is seen that the field modes are initially zero for allwavelengthsand come into being as the universe evolves. In this sense, the universe createsits contents out of its own expansion. At the end of the process, the matterfieldis far from equilibrium and essentially reproduces the initial conditions forthe New Inflationary Model.  相似文献   

5.
In this paper we study the cosmological evolution of the holographic dark energy in a cyclic universe, generalizing the model of holographic dark energy proposed by Li. The holographic dark energy with c<1 can realize a quintom behavior; namely, it evolves from a quintessence-like component to a phantom-like one. The holographic phantom energy density grows rapidly and dominates the late-time expanding phase, helping to realize a cyclic universe scenario in which the high energy regime is modified by the effects of quantum gravity, causing a turn-around (and a bounce) of the universe. The dynamical evolution of holographic dark energy in the regimes of low energy and high energy is governed by two differential equations, respectively. It is of importance to link the two regimes for this scenario. We propose a link condition giving rise to a complete picture of holographic evolution of a cyclic universe.  相似文献   

6.
We present some solutions of late time transition to accelerating universe showing quintessence, phantom or a de-Sitter era of expansion at late time in a FLRW spacetime using Gauss-Bonnet-scalar interaction in the Einstein Hilbert action. In one solution a phantom era of late time acceleration evolves to a Big Rip singularity. The Chameleon mechanism shows that correction to the Newton law could be small.  相似文献   

7.
We present some solutions in a modified theory of gravity with R 2 and \frac1R\frac{1}{R} terms in the Einstein-Hilbert action with an ideal fluid in FLRW spacetime. Graceful exit from early inflation to radiation dominated era is obtained in the strong curvature regime preceding a fluctuation of effective equation of state parameter at the end of inflation. In the weak curvature regime the universe evolves through a radiation era that subsequently turns to a matter era and finally transits to late time accelerating era.  相似文献   

8.
We investigate Isaacson’s high-frequency gravitational waves which propagate in some relevant cosmological models, in particular the FRW spacetimes. Their time evolution in Fourier space is explicitly obtained for various metric forms of (anti-)de Sitter universe. Behaviour of high-frequency waves in the anisotropic Kasner spacetime is also described.  相似文献   

9.
Ramesh Tikekar 《Pramana》2000,55(4):623-628
The introduction of time dependence through a scale factor in a non-conformally flat static cosmological model whose spacetime can be embedded in a five demensional flat spacetime is shown to give rise to two spherical models of universe filled with perfect fluid acompannied with radial heat flux without any Big Bang type singularity. The first model describes an ever existing universe which witnesses a transition from state of contraction to that of ever expansion. The second model represents a universe oscillating between two regular states.  相似文献   

10.
Within our thick brane approach previously used to obtain the cosmological evolution equations on a thick brane embedded in a five-dimensional Schwarzschild Anti-de Sitter spacetime it is explicitly shown that the consistency of these equations with the energy conservation equation requires that, in general, the thickness of the brane evolves in time. This varying brane thickness entails the possibility that both Newton’s gravitational constant G and the effective cosmological constant Λ4 are time dependent.  相似文献   

11.
We study the proposal that a de Sitter (dS) universe with an Anti-de Sitter (AdS) bubble can be replaced by a dS universe with a boundary CFT. To explore this duality, we consider incident gravitons coming from the dS universe through the bubble wall into the AdS bubble in the original picture. In the dual picture, this process has to be identified with the absorption of gravitons by CFT matter. We have obtained a general formula for the absorption probability in general d+1 spacetime dimensions. The result shows the different behavior depending on whether spacetime dimensions are even or odd. We find that the absorption process of gravitons from the dS universe by CFT matter is controlled by localized gravitons (massive bound state modes in the Kaluza-Klein decomposition) in the dS universe. The absorption probability is determined by the effective degrees of freedom of the CFT matter and the effective gravitational coupling constant which encodes information of localized gravitons. We speculate that the dual of (d+1)-dimensional dS universe with an AdS bubble is also dual to a d-dimensional dS universe with CFT matter.  相似文献   

12.
13.
Using the known result that the nucleation of baby universes in correlated pairs is equivalent to spacetime squeezing, we show in this Letter that there exists a T-duality symmetry between two-dimensional warp drives, which are physically expressible as localized de Sitter little universes, and two-dimensional Tolman–Hawking and Gidding–Strominger baby universes respectively correlated in pairs, so that the creation of warp drives is also equivalent to spacetime squeezing. Perhaps more importantly, it has been also seen that the nucleation of warp drives entails a violation of the Bell's inequalities, and hence the phenomena of quantum entanglement, complementarity and wave function collapse. These results are generalized to the case of any dynamically accelerating universe filled with dark or phantom energy whose creation is also physically equivalent to spacetime squeezing and to the violation of the Bell's inequalities, so that the universe we are living in should be governed by essential sharp quantum theory laws and must be a quantum entangled system.  相似文献   

14.
We consider Bianchi VI spacetime, which also can be reduced to Bianchi types VI0-V-III-I. We initially consider the most general form of the energy-momentum tensor which yields anisotropic stress and heat flow. We then derive an energy-momentum tensor that couples with the spatial curvature in a way so as to cancel out the terms that arise due to the spatial curvature in the evolution equations of the Einstein field equations. We obtain exact solutions for the universes indefinitely expanding with constant mean deceleration parameter. The solutions are beriefly discussed for each Bianchi type. The dynamics of the models and fluid are examined briefly, and the models that can approach to isotropy are determined. We conclude that even if the observed universe is almost isotropic, this does not necessarily imply the isotropy of the fluid (e.g., dark energy) affecting the evolution of the universe within the context of general relativity.  相似文献   

15.
We present some solutions of late time transition to an accelerating universe showing a quintessence or a de-Sitter era of expansion at late time using Gauss-Bonnet interaction in a Jordan Brans-Dicke theory in FLRW spacetime. The Gauss-Bonnet term yields an effective cosmological constant characterized by a de-Sitter era of late time expansion when the Gauss-Bonnet interaction is equivalent with an ideal fluid. The quintessence era of late time expansion have been obtained assuming the evolution of scalar field is a single valued function. The Chameleon mechanism shows that the correction to the Newton law could be small.  相似文献   

16.
As an example of a dynamical cosmological black hole, a spacetime that describes an expanding black hole in the asymptotic background of the Einstein-de Sitter universe is constructed. The black hole is primordial in the sense that it forms ab initio with the big bang singularity and its expanding event horizon is represented by a conformal Killing horizon. The metric representing the black hole spacetime is obtained by applying a time dependent conformal transformation on the Schwarzschild metric, such that the result is an exact solution with a matter content described by a two-fluid source. Physical quantities such as the surface gravity and other effects like perihelion precession, light bending and circular orbits are studied in this spacetime and compared to their counterparts in the gravitational field of the isolated Schwarzschild black hole. No changes in the structure of null geodesics are recorded, but significant differences are obtained for timelike geodesics, particularly an increase in the perihelion precession and the non-existence of circular timelike orbits. The solution is expressed in the Newman-Penrose formalism.  相似文献   

17.
New cosmology     
We propose a model of our universe as a 3-sphere resting on the surface of a black hole which exists in a spacetime consisting of four space dimensions and one time dimension. The matter and energy within our universe exist as stationary solutions to the field equations in the Rindler coordinates just above the horizon of the black hole. Each solution may be though of as a standing wave consisting of a wave propagating toward the horizon superposed with its time-reversed twin propagating away from the horizon. As matter and energy from the greater five-dimensional spacetime fall into the black hole, its radius increases and our universe expands. This mechanism of expansion allows the model to describe a universe which is older than its oldest stars and homogeneous without inflation. It also predicts galaxy counts at high redshift which agree with observation.  相似文献   

18.
In view of the time-symmetric nature of the laws of physics, time asymmetry in the universe must arise from “initial” conditions. A fully time-symmetric oscillating model is presented which exists in a highly compressed, highly ordered state att=0 and evolves forward, in the thermodynamic sense, as ∣t ∣ increases. This model offers the possibility of accounting for several fundamental and puzzling aspects of our universe, including matter-antimatter asymmetry, the large entropy per baryon, primordial density enhancements sufficient to form galaxies, and large-scale homogeneity.  相似文献   

19.
20.
An acceleration phase in the early universe allows microscopic quantum fluctuations inside a causal domain to expand into macroscopic ripples in the spacetime metric. These, in turn, can evolve into large-scale structures in the universe. After its generation from quantum fluctuations, a ripple in the metric spends a long period outside the causal domain where its evolution is characterized by a conserved amplitude, a fact closely related to the large-scale Friedmann-like evolution of the perturbed Friedmann universe. We show that, under the assumption of linear processes, the generation and evolution of large-scale structures can be described quite simply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号