首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Boronic acids and their esters are highly considered compounds for the design of new drugs and drug delivery devices, particularly as boron-carriers suitable for neutron capture therapy. However, these compounds are only marginally stable in water. Hydrolysis of some phenylboronic pinacol esters is described here. The kinetics is dependent on the substituents in the aromatic ring. Also the pH strongly influences the rate of the reaction, which is considerably accelerated at physiological pH. Therefore, care must be taken when considering these boronic pinacol esters for pharmacological purposes.   相似文献   

2.
To derive accurately the thermodynamic parameters governing the hydrolysis of the lactone ring at physiological pH, a derivative spectrophotometric technique was used for the simultaneous estimation of lactone and carboxylate forms of the 10-hydroxy-camptothecin (10-HC). Validation of the analytical method was done with respect to reproducibility, percent recovery, and level of detection. Hydrolysis of the lactone ring of 10-HC followed a 1st order decay with a rate constant equal to (0.0281 ± 0.001) min−1 in PBS at pH 7.4 and at a temperature of 310 K. The activation energy for the hydrolysis reaction as calculated from the Arrhenius equation was (79.41 ± 0.92) kJ · mol−1, whereas the enthalpy and entropy of hydrolysis of 10-hydroxy-camptothecin were on average 12.45 kJ · mol−1 and 52.37 J · K−1 · mol−1, respectively. The positive enthalpy and entropy values of the 10-HC-lactone hydrolysis indicate that the reaction is endothermic and entropically driven.  相似文献   

3.
4,13-Diaza-18-crown-6 substantially increases the rate of zirconium(IV) hydrolysis of unactivated peptide amide bonds under near-physiological conditions of temperature and pH. In the presence of this azacrown ether, ZrCl(4) efficiently hydrolyses both neutral and negatively charged peptides (pH 7.0-7.3, 37-60 degrees C).  相似文献   

4.
A kinetic study on the aqueous cleavage of N-(2-methoxyphenyl)phthalimide (1) and N-(2-hydroxyphenyl)phthalimide (2), under the buffers of N-methylmorpholine, reveals the equilibrium presence of monocationic amide (Ctam) formed due to nucleophilic reactions of N-methylmorpholine with 1 and 2. Pseudo-first-order rate constants for the reactions of water and HO- with Ctam (formed through nucleophilic reaction of N-methylmorpholine with 1) are 4.60 x 10(-5) s-1 and 47.9 M-1 s-1, respectively. But the cleavage of Ctam, formed through nucleophilic reaction of N-methylmorpholine with 2, involves intramolecular general base (2'-O- group of Ctam)-assisted water attack at carbonyl carbon of cationic amide group of Ctam in or before the rate-determining step.  相似文献   

5.
The results are given of a study of the hydrolysis of alkyl- and heterylimines of gossypol at various pH values.A. S. Sadykov Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan, Tashkent, fax (371) 162 70 71. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 38–41, January–February, 1999.  相似文献   

6.
7.
The kinetics of hydrolysis at medium acid strength (pH interval 2-5) of a series of phenylsulfamate esters 1 have been studied and they have been found to react by an associative S(N)2(S) mechanism with water acting as a nucleophile attacking at sulfur, cleaving the S-O bond with simultaneous formation of a new S-O bond to the oxygen of a water molecule leading to sulfamic acid and phenol as products. In neutral to moderate alkaline solution (pH ≥ ~ 6-9) a dissociative (E1cB) route is followed that involves i) ionization of the amino group followed by ii) unimolecular expulsion of the leaving group from the ionized ester to give N-sulfonylamine [HN=SO(2)] as an intermediate. In more alkaline solution further ionization of the conjugate base of the ester occurs to give a dianionic species which expels the aryloxide leaving group to yield the novel N-sulfonylamine anion [(-)N=SO(2)]; in a final step, rapid attack of hydroxide ion or a water molecule on it leads again to sulfamic acid. A series of substituted benzyl 4-nitrophenylsulfamate esters 4 were hydrolysed in the pH range 6.4-14, giving rise to a Hammett relationship whose reaction constant is shown to be consistent with the E1cB mechanism.  相似文献   

8.
9.
10.
Cioffi N  Losito I  Terzano R  Zambonin CG 《The Analyst》2000,125(12):2244-2248
The hydrolysis of dehydroascorbic acid (DAAH) at neutral pH and 27 degrees C was investigated by direct infusion electrospray ionisation ion trap mass spectrometry (ESI-MS). This approach permitted derivatisation and elution procedures to be avoided, reducing to the minimum extent sample manipulation and allowing a rapid and direct observation of the species involved in the reaction. Six main peaks, related to hydrated dehydroascorbate (HyDAA-) and diketogulonate (HyDKG-) anions, were observed in the mass spectra of DAAH solutions at different times of incubation and were characterised by MSn experiments. The relevant signal intensities changed with time and a model, based on the irreversible pseudo-first order HyDAA(-)-->HyDKG- conversion, fitted successfully the data obtained for dehydroascorbate. The kinetic constant of the process was (3.2 +/- 0.5) x 10(-2) min-1. The influence of metal ion traces on the hydrolysis rate was also checked, performing experiments in the presence of EDTA, and was found to be negligible.  相似文献   

11.
12.
To accurately derive the kinetic and thermodynamic parameters governing the hydrolysis of the lactone ring at physiological pH, a derivative spectrophotometric technique was used for the simultaneous estimation of lactone and carboxylate forms of camptothecin (CPT). The hydrolysis of the CPT‐lactone and the lactonization of CPT‐carboxylate at 310.15 K followed a first‐order decay with apparent rate constants equal to 0.0279 ± 0.0016 min?1 and 0.0282 ± 0.0024 min?1, respectively. The activation energy associated with the hydrolysis of the CPT‐lactone and the lactonization of the CPT‐carboxylate as calculated from the Arrhenius equation was 89.18 ± 0.84 and 86.49 ± 2.7 kJ mol?1, respectively. The enthalpy and entropy of the thermodynamically favored hydrolysis reaction were on average 10.49 kJ mol?1 and 48.00 J K?1 mol?1, respectively. The positive enthalpy and entropy values of the CPT‐lactone hydrolysis indicate that the reaction is endothermic and entropically driven. The stability of CPT‐lactone in the presence of human serum albumin (HSA) was also analyzed. Notwithstanding the much faster hydrolysis of the CPT‐lactone in the presence of HSA at various temperatures, the energy of activation was determined to be similar to the one estimated in the absence of HSA, suggesting that HSA does not catalyze the hydrolysis reaction, but it merely binds, sequesters, and stabilizes the CPT‐carboxylate species. © 2009 Wiley Periodicals, Inc. Int J Chem Kinet 41: 704–715, 2009  相似文献   

13.
14.
Infrared and NMR data on tertiary amine-catalyzed, dicyandiamide—epoxy resin (and model compound) systems have been utilized to elucidate the mechanism of the curing process. The early exothermic curing reaction is shown to be ring opening of the resin epoxy groups by dicyandiamide imino and amino anionic species, giving rise to N-alkyl cyanoguanidines; a minor amount of polyether formation also occurs at this time. After the exothermic reaction is essentially complete at <90°C., a slow, high temperature (110–200°C.) addition of hydroxyl hydrogen across the nitrile triple bond occurs, giving rise to an imino ether which then rearranges to the guanyl urea.  相似文献   

15.
[reaction: see text] Herein we introduce tetrazole and its suitably designed derivatives as powerful ester-cleaving reagents. By first performing a detailed ab initio computational study, we found that, in the side chain of 5-alkyl-1H-tetrazoles, introduction of a heteroatom (e.g., N, O, or S at the alpha-position of the tetrazole ring) raises the charge on the tetrazole nucleus significantly. All calculations have been performed using restricted Hartree-Fock (RHF) and hybrid ab initio/DFT (B3LYP) methods employing 6-31G* and 6-31+G* basis sets. To estimate the nucleophilicity of these reagents, the charges on conjugate bases of various tetrazole derivatives have been calculated using natural population (NBO) analysis in gas phase and in water. Free energy of protonation (fep) of the 1H-tetrazole derivatives (1-7), free energy of solvation, deltaG(aq), and the corresponding pKa values have been calculated by self-consistent reaction field (SCRF) methods applying the polarized continuum model (PCM). Since the calculation indicates that incorporation of heteroatom leads to enhanced nucleophilicity in their deprotonated anionic tetrazole forms, a series of 5-substituted 1H-tetrazole derivatives have been synthesized. These compounds indeed catalyze the hydrolysis of p-nitrophenyl diphenyl phosphate (PNPDPP) and p-nitrophenyl hexanoate (PNPH) efficiently in cationic cetyl trimethylammonium bromide (CTABr) micelles at pH 7.0 and 25 degrees C. The pseudo-first-order rate constants (k(obs)) were determined for each catalyst against both substrates. The experimental and theoretical results show that, to achieve better k(obs) values for the cleavage of PNPDPP and PNPH under micellar conditions, charge on the N- atom (nucleophile) of conjugate base is important. Replacing the alpha-CH2 in alkyl substituent with S (3), NH (4), or O (5) enhances the accumulation of charge on N- in conjugate bases of tetrazoles and subsequently increases their intrinsic nucleophilic reactivity toward hydrolytic reactions. Significantly large rate enhancements were observed for the cleavage of PNPDPP and PNPH at pH 7.0 in the presence of catalytic system 5/CTABr over background (only CTABr). Tetrazole 4 (alpha-isomer) showed 4-5-fold superior reactivity over 6 (beta-isomer) under identical conditions. Natural charges obtained from NBO analysis (B3LYP/6-31+G*) are -0.94 and -0.852 on N- in the conjugate bases of 4 and 6, respectively. This also predicts that 4 is a better nucleophile than 6. All the newly synthesized tetrazole derivatives in micellar media display true catalytic properties by cleaving several fold excess of substrates.  相似文献   

16.
17.
18.
19.
Results of simulation of the mechanism of hydrolysis of adenosine triphosphate and guanosine triphosphate in protein matrices, as well as of deprotonated methyl triphosphate in water clusters by quantum and molecular mechanics with separation of the reaction system into conformationally flexible effective fragments are discussed.  相似文献   

20.
Particle formation in the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) was studied by varying pH (9.5-11) with the basic catalysts NH3, methylamine (MA), and dimethylamine (DMA) in the presence of 5 mol/m3 CH3COOH, which was chosen to suppress time variations of pH and ionic strength during the reaction. Spherical particles were formed for MA and DMA at catalyst concentrations of 0.02-0.2 kmol/m3 and for NH3 at catalyst concentrations of 0.1-1.5 kmol/m3. In a common range of catalyst concentrations for spherical particle formation, average particle size was largest for DMA and smallest for NH3. Hydrolysis rate of TEOS could be quantified by the use of buffer systems as a function of TEOS and OH- concentrations. A specific relation was not found between the hydrolysis and the particle size. The zeta potential of silica particles measured in the reaction solvent was in the order DMA < MA < NH3, and ionic strength, estimated from pH in the reactions, was in the order DMA approximately equal to MA > NH3. This suggested that the particle sizes were controlled by electrostatic particle interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号