首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We show that the Floer cohomology and quantum cohomology rings of the almost Kähler manifoldM, both defined over the Novikov ring of the loop space M, are isomorphic. We do it using a BRST trivial deformation of the topological A-model. The relevant aspect of noncompactness of the moduli of pseudoholomorphic instantons is discussed. It is shown nonperturbatively that any BRST trivial deformation of A model which does not change the dimensions of BRST cohomology does not change the topological correlation functions either.  相似文献   

2.
In 1993, Lian-Zuckerman constructed two cohomology operations on the BRST complex of a conformal vertex algebra with central charge 26. They gave explicit generators and relations for the cohomology algebra equipped with these operations in the case of the c = 1 model. In this paper, we describe another such example, namely, the semi-infinite Weil complex of the Virasoro algebra. The semi-infinite Weil complex of a tame -graded Lie algebra was defined in 1991 by Feigin-Frenkel, and they computed the linear structure of its cohomology in the case of the Virasoro algebra. We build on this result by giving an explicit generator for each non-zero cohomology class, and describing all algebraic relations in the sense of Lian-Zuckerman, among these generators.  相似文献   

3.
Introducing the notion of an admissible graded Lie subalgebra A of the Nijenhui-Richardson algebra A(V) of the vector space V, it is shown that each cohomology class of a subcomplex C A of the Chevalley-Eilenberg complex (C 0 M), extends in a cononical way as a graded cohomology class of weight — 1 of A. Applying this when V is the space N of smooth functions of a smooth manifold M, shows that the de Rham cohomology of M is induced by the graded cohomology of weight — 1 of the Schouten graded Lie algebra of M. This allows us to construct explicitly all 1-differential, nc formal deformations of the Poisson bracket of a symplectic manifold. The construction also applies for an arbitrary Poisson manifold but leads to only part of these deformations when the structure degenerates, as shown by an example.  相似文献   

4.
In this paper we study the finitely generated algebras underlyingW algebras. These so called finiteW algebras are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings ofsl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finiteW algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finiteW symmetry. In the second part we BRST quantize the finiteW algebras. The BRST cohomology is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finiteW algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finiteW algebras. It is shown, using a quantum version of the generalized Miura transformation, that the representations of finiteW algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finiteW algebras.  相似文献   

5.
A complete canonical formulation of the BRST theory of systems with redundant gauge symmetries is presented. These systems includep-form gauge fields, the superparticle, and the superstring. We first define the Koszul-Tate differential and explicitly show how the introduction of the momenta conjugate to the ghosts of ghosts makes it acyclic. The global existence of the BRST generator is then demonstrated, and the BRST charge is proved to be unique up to canonical transformations in the extended phase space, which includes the ghosts. Finally, the BRST cohomology in classical mechanics is investigated and shown to be equal to the cohomology of the exterior derivative along the gauge orbits, as in the irreducible case. This is done by re-expressing the exterior algebra along the gauge orbits as a free differential algebra containing generators of higher degree, which are identified with the ghosts of ghosts. The quantum cohomology is not dealt with.Aspirant du Fonds National de la Recherche Scientifique (Belgium)Chercheur qualifié au Fonds National de la Recherche Scientifique (Belgium)  相似文献   

6.
7.
We study a class of supersymmetric spinning particle models derived from the radial quantization of stationary, spherically symmetric black holes of four dimensional \({{\mathcal N} = 2}\) supergravities. By virtue of the c-map, these spinning particles move in quaternionic Kähler manifolds. Their spinning degrees of freedom describe mini-superspace-reduced supergravity fermions. We quantize these models using BRST detour complex technology. The construction of a nilpotent BRST charge is achieved by using local (worldline) supersymmetry ghosts to generate special holonomy transformations. (An interesting byproduct of the construction is a novel Dirac operator on the superghost extended Hilbert space.) The resulting quantized models are gauge invariant field theories with fields equaling sections of special quaternionic vector bundles. They underly and generalize the quaternionic version of Dolbeault cohomology discovered by Baston. In fact, Baston’s complex is related to the BPS sector of the models we write down. Our results rely on a calculus of operators on quaternionic Kähler manifolds that follows from BRST machinery, and although directly motivated by black hole physics, can be broadly applied to any model relying on quaternionic geometry.  相似文献   

8.
We consider 2D gravity coupled toc1 conformal matter in the conformal gauge. The Liouville system is represented by a free scalar field, L , with background charge such that the BRST operator imposing reparametrization invariance is nilpotent. We compute the cohomology of this BRST charge on the product of the Fock space of L with those of the ghosts and one other free scalar field, M representing the matter system. From this calculation the physical states of the full theory are determined. For thec<1 case the further projection from the Fock space of M to the irreducible representation, using Felder's resolution, reproduces the results of Lian and Zuckerman.Supported by the NSF Grant # PHY-88-04561Supported in part by the Department of Energy Contract # DE-FG03-84ER-40168 and by the USC Faculty Research and Innovation Fund  相似文献   

9.
We describe the relations between the local Chevalley cohomologies related to the adjoint representation of the Poisson Lie algebra of a symplectic manifold and the Lie algebras of all symplectic or globally Hamiltonian vector fields of the manifold. The proofs are based on the computation of the cohomology of the complex (E, ), where E is the space of multilinear local maps from a vector bundle of a manifold M into the space of forms on M and L=d L.  相似文献   

10.
In this paper, we formulate a generalization of the classical BRST construction which applies to the case of the reduction of a Poisson manifold by a submanifold. In the case of symplectic reduction, our procedure generalizes the usual classical BRST construction which only applies to symplectic reduction of a symplectic manifold by a coisotropic submanifold, i.e. the case of reducible first class constraints. In particular, our procedure yields a method to deal with second-class constraints. We construct the BRST complex and compute its cohomology. BRST cohomology vanishes for negative dimension and is isomorphic as a Poisson algebra to the algebra of smooth functions on the reduced Poisson manifold in zero dimension. We then show that in the general case of reduction of Poisson manifolds, BRST cohomology cannot be identified with the cohomology of vertical differential forms.Address after September 1992  相似文献   

11.
In this article we consider quantum phase space reduction when zero is a regular value of the momentum map. By analogy with the classical case we define the BRST cohomology in the framework of deformation quantization. We compute the quantum BRST cohomology in terms of a "quantum" Chevalley-Eilenberg cohomology of the Lie algebra on the constraint surface. To prove this result, we construct an explicit chain homotopy, both in the classical and quantum case, which is constructed out of a prolongation of functions on the constraint surface. We have observed the phenomenon that the quantum BRST cohomology cannot always be used for quantum reduction, because generally its zero part is no longer a deformation of the space of all smooth functions on the reduced phase space. But in case the group action is "sufficiently nice", e.g. proper (which is the case for all compact Lie group actions), it is shown for a strongly invariant star product that the BRST procedure always induces a star product on the reduced phase space in a rather explicit and natural way. Simple examples and counterexamples are discussed.  相似文献   

12.
The classical (non-quantum) cohomology of the Becchi-Rouet-Stora-Tyutin (BRST) symmetry in phase space is defined and worked out. No group action for the gauge transformations is assumed. The results cover, therefore, the general case of an open algebra and are valid off-shell. Each cohomology class contains all BRST invariant functions with fixed ghost number (an integer) which differ from each other by a BRST variation. If the ghost number is negative there is only the trivial class whose elements are equivalent to zero. If the ghost number is positive or zero there is a bijective correspondence between the BRST classes and those of the exterior derivative along the gauge orbits. These gauge orbits lie in the phase space surface on which the gauge generators are constrained to vanish. The BRST invariant functions of ghost numberp are then related to closedp-forms along the orbits. The addition of a BRST variation corresponds to the addition of an exact form. Some comments about the quantum case are included. The physical meaning of the classes with ghost number greater than zero is not discussed.Chercheur qualifié du Fonds National de la Recherche Scientifique (Belgium)  相似文献   

13.
The algebraic structure of the antifield-antibracket formalism for both reducible and irreducible gauge theories is clarified. This is done by using the methods of Homological Perturbation Theory (HPT). A crucial ingredient of the construction is the Koszul-Tate complex associated with the stationary surface of the classical extremals. The Koszul-Tate differential acts on the antifields and is graded by the antighost number. It provides a resolution of the algebraA of functions defined on the stationary surface, namely, it is acyclic except at degree zero where its homology group reduces toA. Acyclicity only holds because of the introduction of the ghosts of ghosts and provides an alternative criterion for what is meant by a proper solution of the master equation. The existence of the BRST symmetry follows from the techniques of HPT. The classical Lagrangian BRST cohomology is completely worked out and shown to be isomorphic with the cohomology of the exterior derivative along the gauge orbits on the stationary surface. The algebraic structure of the formalism is identical with the structure of the Hamiltonian BRST construction. The role played there by the constraint surface is played here by the stationary surface. Only elementary quantum questions (general properties of the measure) are addressed.  相似文献   

14.
15.
Some ingredients of the BRST construction for quantum Lie algebras are applied to a wider class of quadratic algebras of constraints. We build the BRST charge for a quantum Lie algebra with three generators and ghost-anti-ghosts commuting with constraints. We consider a one-parametric family of quadratic algebras with three generators and show that the BRST charge acquires the conventional form after a redefinition of ghosts. The modified ghosts form a quadratic algebra. The family possesses a nonlinear involution, which implies the existence of two independent BRST charges for each algebra in the family. These BRST charges anticommute and form a double BRST complex.  相似文献   

16.
17.
18.
We consider the theory of bosonic closed strings on the flat background ℝ25,1. We show how the BRST complex can be extended to a complex where the string center of mass operator,x 0 μ is well defined. We investigate the cohomology of the extended complex. We demonstrate that this cohomology has a number of interesting features. Unlike in the standard BRST cohomology, there is no doubling of physical states in the extended complex. The cohomology of the extended complex is more physical in a number of aspects related to the zero-momentum states. In particular, we show that the ghost number one zero-momentum cohomology states are in one to one correspondence with the generators of the global symmetries of the backgroundi.e., the Poincaré algebra. Supported in part by funds provided by the U.S. Department of Energy (D.O.E.) under cooperative agreement #DF-FC02-94ER40818  相似文献   

19.
The chiral equivariant cohomology contains and generalizes the classical equivariant cohomology of a manifold M with an action of a compact Lie group G. For any simple G, there exist compact manifolds with the same classical equivariant cohomology, which can be distinguished by this invariant. When M is a point, this cohomology is an interesting conformal vertex algebra whose structure is still mysterious. In this paper, we scratch the surface of this object in the case G = SU(2).  相似文献   

20.
A method for finding the general form of the BRS cohomology spaceH for the various gauge and supersymmetry theories is presented. The method is adapted for use in the space of integrated local polynomials of the gauge fields and ghosts with arbitrary numbers of fields and dervivatives. The technique uses the Hodge decomposition in a Fock space with a Euclidean inner product, and combines this with spectral sequences to generate simple and soluble equations whose solutions span a simple spaceE isomorphic to the complicated spaceH. The technique is illustrated for pedagogic purposes by the detailed calculation of the ghost charge zero and one sectors ofH for Yang-Mills theory with gauge groupSO (32) in ten dimensions. The method is appropriate for supersymmetric theories, gravity, supergravity and superstrings where higher order terms with many derivatives occur naturally in the effective action.Research supported in part by the Robert A. Welch Foundation and NSF Grants PHY 77-18762 and PHY 9009850  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号