首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
设计了一个长度为20个核苷酸的分子信标,建立了有机磷农药和分子信标竞争结合适配体鉴定其活性的方法,对前期筛选的两条适配体进行了活性位点分析和改造.结果表明,分子信标设计合理,性能稳定,其发夹结构在室温下既可成功闭合也可成功打开,最佳的活性鉴定条件为分子信标与适配体添加比例1.25∶1,孵育时间50 min,孵育温度为室温.活性位点分析表明Loop2-4是4种有机磷农药共有的活性位点,Loop2-3及SS4-54适配体5’端和3 '端残余的核苷酸是甲拌磷重要的活性位点,Loop2-2和Loop4-2是丙溴磷和水胺硫磷共有的活性位点,Loop4-3是丙溴磷和氧化乐果共有的活性位点,Loop2-1和Loop4-1是水胺硫磷重要的活性位点.通过基因拼接改造的SS24-PJ-35适配体对丙溴磷和水胺硫磷的结合活性明显提高.  相似文献   

2.
DNA aptamers and DNA enzymes (DNAzymes or deoxyribozymes) are single-stranded DNA molecules with ligand-binding and catalytic capabilities, respectively. Allosteric DNA enzymes (aptazymes) are deoxyribozymes whose activity can be regulated by the binding state of an appended aptamer domain and have many potential uses in the fields of drug discovery and diagnostics. In this report, we describe a simple, yet potentially general, DNA aptazyme rational design strategy that requires no structural characterization of the constituent deoxyribozymes and aptamers. It is based on the concept originally developed in our laboratory for the design of structure-switching signaling aptamers that change structural states from a DNA-DNA duplex to a DNA-target complex upon target binding. In our new strategy, an antisense oligonucleotide is used to regulate the enzymatic activity of a linked aptamer-deoxyribozyme by annealing with a stretch of nucleotides on each side of the aptamer-DNAzyme junction. Structural reorganization of the aptamer domain upon target binding relieves the suppressive effect of this regulatory oligonucleotide on the attached DNA enzyme. Consequently, the target-binding event triggers the catalytic action of the aptazyme. We have demonstrated this concept using two RNA-cleaving deoxyribozymes, each adjoined to a DNA aptamer that binds ATP. These allosteric DNA enzymes exhibit the same ligand-binding specificity as the parental DNA aptamer and show up to 30-fold rate enhancement in the presence of ATP. The described methodology provides a convenient approach for rationally designing catalytic DNA-based biosensors.  相似文献   

3.
We have applied surface plasmon resonance (SPR) spectroscopy, in combination with one-step direct binding, competition, and sandwiched assay schemes, to study thrombin binding to its DNA aptamers, with the aim to further the understanding of their interfacial binding characteristics. Using a 15-mer aptamer that binds thrombin primarily at the fibrinogen-recognition exosite as a model, we have demonstrated that introducing a DNA spacer in the aptamer enhances thrombin-binding capacity and stability, as similarly reported for hydrocarbon linkers. The bindings are aptamer surface coverage and salt concentration dependent. When free aptamers or DNA sequences complementary to the immobilized aptamer are applied after the formation of thrombin/aptamer complexes, bound thrombin is displaced to a certain extent, depending on the stability of the complexes formed under different conditions. When the 29-mer aptamer (specific to thrombin's heparin-binding exosite) is immobilized on the surface, its affinity to thrombin appears to be lower than the immobilized 15-mer aptamer, although the 29-mer aptamer is known to have a higher affinity in the solution phase. These findings underline the importance of aptamers' ability to fold into intermolecular structures and their accessibility for target capture. Using a sandwiched assay scheme followed by an additional signaling step involving biotin-streptavidin chemistry, we have observed the simultaneous binding of the 15- and 29-mer aptamers to thrombin protein at different exosites and have found that one aptamer depletes thrombin's affinity to the other when they bind together. We believe that these findings are invaluable for developing DNA aptamer-based biochips and biosensors.  相似文献   

4.
5.
We studied aptamer binding events in a heterogeneous format using label-free and fluorescence measurements for the purpose of developing an aptamer-based sandwich assay on a standard microtiter plate platform. The approach allowed visualization of the underlying aptamer immobilization and target binding events rather than relying on only an endpoint determination for method optimization. This allowed for a better understanding of these multi-step assays and optimal conditions specific to aptamers. α-thrombin was chosen as a prototypical analyte as two well-studied aptamers (15 and 29-mer) binding distinct epitopes are available. The Corning Epic? system, which utilizes a resonance waveguide diffraction grating in a 384-well microtiter plate format, was employed to measure relative immobilization and binding levels for various modified aptamers. Parameters investigated included the effects of aptamer orientation, label orientation, spacer length, spacer type, immobilization concentration, and binding buffer. Most notably, the 15-mer aptamer was preferable for capture over the 29-mer aptamer and aptamers with increasing poly(dT) spacer length between the biotin modification and the aptamer yielded decreased immobilization levels. This decreased immobilization resulted in increased α-thrombin binding ability for 15-mer aptamers with the poly(dT) spacer. Fluorescence measurements of fluorescein-labeled 29-mer aptamers with varying spacers were used to visualize sandwich complex formation. Using both label-free and traditional fluorescence measurements, an in-depth understanding of the overall assay was obtained, thus the inclusion of label-free measurements is recommended for future method development.  相似文献   

6.
The replacement of one or more nucleotide residues in the potent α-thrombin-binding aptamer NU172 with hexitol-based nucleotides has been devised to study the effect of these substitutions on the physicochemical and functional properties of the anticoagulant agent. The incorporation of single hexitol nucleotides at the T9 and G18 positions of NU172 substantially retained the physicochemical features of the parent oligonucleotide, as a result of the biomimetic properties of the hexitol backbone. Importantly, the NU172- T H9 mutant exhibited a higher binding affinity toward human α-thrombin than the native aptamer and an improved stability even after 24 h in 90 % human serum, with a significant increase in the estimated half-life. The anticoagulant activity of the modified oligonucleotide was also found to be slightly preferable to NU172. Overall, these results confirm the potential of hexitol nucleotides as biomimetic agents, while laying the foundations for the development of NU172-inspired α-thrombin-binding aptamers.  相似文献   

7.
Poisoning by organophosphates (OPs) takes one of the leading places in the total number of exotoxicoses. Detoxication of OPs at the first stage of the poison entering the body could be achieved with the help of DNA- or RNA-aptamers, which are able to bind poisons in the bloodstream. The aim of the research was to develop an approach to rational in silico design of aptamers for OPs based on the example of paraoxon. From the published sequence of an aptamer binding organophosphorus pesticides, its three-dimensional model has been constructed. The most probable binding site for paraoxon was determined by molecular docking and molecular dynamics (MD) methods. Then the nucleotides of the binding site were mutated consequently and the values of free binding energy have been calculated using MD trajectories and MM-PBSA approach. On the basis of the energy values, two sequences that bind paraoxon most efficiently have been selected. The value of free binding energy of paraoxon with peripheral anionic site of acetylcholinesterase (AChE) has been calculated as well. It has been revealed that the aptamers found bind paraoxon more effectively than AChE. The peculiarities of paraoxon interaction with the aptamers nucleotides have been analyzed. The possibility of improving in silico approach for aptamer selection is discussed.  相似文献   

8.
In vitro selection with either DNA or RNA libraries was performed against the TAR RNA element of HIV-1. The role of the selection conditions on the outcome of the selection was evaluated by varying the magnesium concentration and the temperature. The selection stringency was demonstrated to determine i) the affinity of the best identified aptamers for the TAR target, and ii) the type of interaction between the two partners. Selections performed with a DNA library under low (4 degrees C, 10 mM magnesium) and high stringency (23 degrees C, 3 mM magnesium) led to the emergence of "kissing aptamers"; but even if the motif interacting directly with the TAR loop were identical in the two kinds of aptamers, the consensus was extended from eight to thirteen nucleotides when the Mg(2+) concentration was decreased from 10 to 3 mM. Similar kissing aptamers were selected at 23 degrees C and 37 degrees C starting with two different RNA libraries under identical ionic conditions. In addition, selection performed at 37 degrees C yielded a significant proportion of antisense sequences. Only antisense RNAs complementary to the TAR loop competitively inhibited the association of a Tat peptide with TAR.  相似文献   

9.
《Solid State Sciences》2012,14(8):1060-1063
A highly sensitive and selective small molecule detection platform has been developed using aptamers immobilized on electrode surface. In our system, two aptamers were used – one of which is for ATP recognition and the other is for signal produce. We designed two probes L1 (containing ATP aptamer and a part of hemin aptamer) and L2 (containing the complementary strand of ATP aptamer and the rest of hemin aptamer) and immobilized L1 on electrode surface. L2 was used to hybridize to L1 and form L1–L2 duplex which brought the two parts of hemin aptamer into close proximity. Then hemin can be captured by this duplex and detected by electrochemical methods. When we introduced ATP into the system, the ATP binding destroyed the duplex and L2 diffused into the solution. As a result, hemin cannot be captured to bring electrochemical signal.  相似文献   

10.
DNA aptamers are single stranded DNA (ssDNA) molecules artificially selected from random-sequence DNA libraries for their specific binding to a certain target. DNA aptamers have a number of advantages over antibodies and promise to replace them in both diagnostic and therapeutic applications. The development of DNA aptamers involves three major stages: library enrichment, obtaining individual DNA clones, and the affinity screening of the clones. The purpose of the screening is to obtain the nucleotide sequences of aptamers and the binding parameters of their interaction with the target. Highly efficient approaches have been recently developed for the first two stages, while the third stage remained the rate-limiting one. Here, we introduce a new method for affinity screening of individual DNA aptamer clones. The proposed method amalgamates: (i) aptamer amplification by asymmetric PCR (PCR with a primer ratio different from unity), (ii) analysis of aptamer-target interaction, combining in-capillary mixing of reactants by transverse diffusion of laminar flow profiles (TDLFP) and affinity analysis using kinetic capillary electrophoresis (KCE), and (iii) sequencing of only aptamers with satisfying binding parameters. For the first time we showed that aptamer clones can be directly used in TDLFP/KCE-based affinity analysis without an additional purification step after asymmetric PCR amplification. We also demonstrated that mathematical modeling of TDLFP-based mixing allows for the determination of Kd values for the in-capillary reaction of an aptamer and a target and that the obtained Kd values can be used for the accurate affinity ranking of aptamers. The proposed method does not require the knowledge of aptamer sequences before screening, avoids lengthy (3-5 h) purification steps of aptamer clones, and minimizes reagent consumption to nanoliters.  相似文献   

11.
We used the methods of electrochemical indicators and the quartz crystal microbalance (QCM) for detection of thrombin-aptamer interactions. We analyzed how the method of immobilization of aptamer to a solid support, the aptamer configuration as well as variation in ionic strength and pH will affect the binding of thrombin to the aptamer. The immobilization of aptamer by means of avidin-biotin technology revealed best results in sensitivity in comparison with immobilization utilizing dendrimers of first generation and in comparison with chemisorption of aptamer to a gold surface. Linear and molecular beacon aptamers of similar structure of binding site revealed similar binding properties to thrombin. Increased concentration of NaCl resulted in weakening of the binding of thrombin to the aptamers, probably due to shielding effect of Na(+) ions. The binding of the thrombin to the aptamer depends on electrolyte pH, which is presumably connected with maintaining the three dimensional aptamer configuration, optimal for binding the protein.  相似文献   

12.
Structural characterization of aptamer-protein interactions is challenging and limited despite the tremendous applications of aptamers. Here we for the first time report a fluorescence anisotropy (FA) approach for mapping the interaction of an aptamer and its protein target at the single nucleotide level. Nine fluorescently labeled aptamers, each conjugated to a single tetramethylrhodamine at a specified nucleotide in the aptamer, were used to study their interactions with thrombin. Simultaneous monitoring of both fluorescence anisotropy changes and electrophoretic mobility shifts upon binding of the fluorescently modified aptamer to the protein provides unique information on the specific nucleotide site of binding. T25, T20, T7 and the 3'-end were identified as the close contact sites, and T3, C15T, and the 5'-end were identified as the sites distant from the binding. This approach is highly sensitive and does not require cross-linking reactions. Studies of aptamer-protein interactions using this technique are potentially useful for design, evolution, and modification of functional aptamers for a range of bioanalytical, diagnostic, and therapeutic applications.  相似文献   

13.
14.

The use of aptamers in various analytical applications as molecular recognition elements and alternative to antibodies has led to the development of various platforms that facilitate the sensitive and specific detection of targets ranging from small molecules and proteins to whole cells. The goal of this work was to design a universal and adaptable sandwich-type aptasensor exploiting the unique properties of DNA binding proteins. Specifically, two different enzyme-DNA binding protein conjugates, GOx-dHP and HRP-scCro, were used for the direct detection of a protein using two aptamers for target capture and detection. The specific dsDNA binding sequence for each DNA binding protein tag was incorporated in the form of a hairpin at one end of each aptamer sequence during the synthesis step. Detection was accomplished by an enzymatic (GOx/HRP) cascade reaction after the binding of each enzyme conjugate to its corresponding binding sequence on each aptamer. The proposed sandwich-type aptasensor was validated for the detection of thrombin, which is one of the most commonly used model targets with known dual aptamers. The limit of detection accomplished was 0.92 nM which is comparable with other colorimetric platforms reported in the literature. The sensitivity of the aptasensor was easily modulated by changing the number of dsDNA binding sites incorporated in the aptamer sequences, thus controlling the enzyme stoichiometry. Finally, the potential use of the proposed sensing approach for real sample testing was demonstrated using spiked human plasma and no significant matrix effects were observed when up to 2% plasma was used.

  相似文献   

15.
Nucleic acid aptamers have been shown many unique applications as excellent probes in molecular recognition. However, few examples are reported which show that aptamers can be internalized inside living cells for aptamer functional studies and for targeted intracellular delivery. This is mainly due to the limited number of aptamers available for cell-specific recognition, and the lack of research on their extra- and intracellular functions. One of the major difficulties in aptamers' in vivo application is that most of aptamers, unlike small molecules, cannot be directly taken up by cells without external assistance. In this work, we have studied a newly developed and cell-specific DNA aptamer, sgc8. This aptamer has been selected through a novel cell selection process (cell-SELEX), in which whole intact cells are used as targets while another related cell line is used as a negative control. The cell-SELEX enables generation of multiple aptamers for molecular recognition of the target cells and has significant advantages in discovering cell surface binding molecules for the selected aptamers. We have studied the cellular internalization of one of the selected aptamers. Our results show that sgc8 is internalized efficiently and specifically to the lymphoblastic leukemia cells. The internalized sgc8 aptamers are located inside the endosome. Comparison studies are done with the antibody for the binding protein of sgc8, PTK7 (Human protein tyrosine kinase-7) on cell surface. We also studied the internalization kinetics of both the aptamer and the antibody for the same protein on the living cell surface. We have further evaluated the effects of sgc8 on cell viability, and no cytotoxicity is observed. This study indicates that sgc8 is a promising agent for cell-type specific intracellular delivery.  相似文献   

16.
Functional nucleic acids, such as aptamers and allosteric ribozymes, can sense their ligands specifically, thereby undergoing structural alterations that can be converted into a detectable signal. The direct coupling of molecular recognition to signal generation enables the production of versatile reporters that can be applied as molecular probes for various purposes, including high‐throughput screening. Here we describe an unprecedented type of a nucleic acid‐based sensor system and show that it is amenable to high‐throughput screening (HTS) applications. The approach detects the displacement of an aptamer from its bound protein partner by means of luminescent oxygen channeling. In a proof‐of‐principle study we demonstrate that the format is feasible for efficient identification of small drug‐like molecules that bind to a protein target, in this case to the Sec7 domain of cytohesin. We extended the approach to a new cytohesin‐specific single chain DNA aptamer, C10.41, which exhibits a similar binding behavior to cytohesins but has the advantage of being more stable and easier to synthesize and to modify than the RNA‐aptamer M69. The results obtained with both aptamers indicate the general suitability of the aptamer‐displacement assay based on luminescent oxygen channelling (ADLOC) for HTS. We also analyzed the potential for false positive hits and identified from a library of 18 000 drug‐like small molecules two compounds as strong singlet‐oxygen quenchers. With full automation and the use of commercially available plate readers, we estimate that the ADLOC‐based assay described here could be used to screen at least 100 000 compounds per day.  相似文献   

17.
Probing the structure of DNA aptamers with a classic heterocycle   总被引:1,自引:0,他引:1  
DNA aptamers are synthetic, single-stranded DNA oligonucleotides selected by SELEX methods for their binding with specific ligands. Here we present ethidium binding results for three related DNA aptamers (PDB code: 1OLD, 1DB6, and 2ARG)that bind L-argininamide (L-Arm). The ligand bound form of each aptamer's structure has been reported and each are found to be composed primarily of two domains consisting of a stem helical region and a loop domain that forms a binding pocket for the cognate ligand. Previous thermodynamic experiments demonstrated that the DNA aptamer 1OLD undergoes a large conformational ordering upon binding to L-Arm. Here we extend those linkage binding studies by examining the binding of the heterocyclic intercalator ethidium to each of the three aptamers by fluorescence and absorption spectrophotometric titrations. Our results reveal that ethidium binds to each aptamer with DeltaG degree's in the range of -8.7 to -9.4 kcal/mol. The stoichiometry of binding is 2:1 for each aptamer and is quantitatively diminished in the presence of L-Arm as is the overall fluorescence intensity of ethidium. Together, these results demonstrate that a portion of the bound ethidium is excluded from the aptamer in the presence of a saturating amount of L-Arm. These results demonstrate the utility of ethidium and related compounds for the probing of non-conventional DNA structures and reveal an interesting fundamental thermodynamic linkage in DNA aptamers. Results are discussed in the context of the thermodynamic stability and structure of each of the aptamers examined.  相似文献   

18.
Post-SELEX chemical optimization of a trypanosome-specific RNA aptamer   总被引:3,自引:0,他引:3  
African trypanosomes are the causative agent of sleeping sickness. The therapeutics used to control and treat the disease are very ineffective and thus, the development of improved drugs is urgently needed. Recently, new strategies for the design of novel trypanocidals have been put forward. Among them are techniques that rely on parasite-specific RNA aptamers. One approach involves the aptamer-directed transport of lytic compounds to the lysosome of the parasite. The aptamer has been termed 2-16 RNA and here we report the optimization of the RNA for its applications in vivo. To convert aptamer 2-16 into a serum-stable reagent 2'-deoxy-2'-F- and/or 2'-deoxy-2'-NH(2)-uridine- and cytidine-substituted RNAs were generated. While 2'-NH(2)-dC/dU-modified RNAs were RNase-resistant, they were functionally inactive. By contrast, 2'-F-dC/dU-substituted 2-16 RNA retained its ability to bind to live trypanosomes (K(d)=45 nM) and was routed to the lysosome identically to unmodified RNA. 2'-F-dC/dU-substituted 2-16 RNA is thermostable (T(m)=75 degrees C) and has a serum half-life of 3.4 days. Furthermore, aptamer 2-16 was site-specifically PEGylated to increase its serum retention time. Conjugation with PEG polymers < or = 10 kDa only marginally impacted the binding characteristics of the RNA, while the addition of higher molecular mass PEG molecules resulted in non-functional aptamers. Together, the data provide optimized conjugation chemistries for the large-scale production of substituted aptamer 2-16 preparations with improved in vivo functionality.  相似文献   

19.
Several different approaches have been taken to development of homogeneous fluorescent aptamer assays including end-labeled beacons and signaling aptamers which are intrinsically quenched by nucleotides. Two new strategies dubbed "intrachain" and "competitive" FRET-aptamer assays are summarized in this review. Intrachain and competitive FRET-aptamers can be engineered on the molecular level through a series exploratory experiments involving prior knowledge of aptamer secondary or tertiary structures and hypotheses about aptamer conformational changes. However, there is an intrinsic risk of altering aptamer affinity or specificity associated with chemical modifications of an aptamer. Natural selection methods for FRET-aptamers have also been devised to potentially obviate the chemical modification problem. The naturally selected aptamers are subjected to fluorophore (F)- and or quencher (Q)-conjugated nucleotide triphosphate (NTP) incorporation by polymerase chain reaction (PCR) with permissive polymerases such as Deep Vent exo-, but still demonstrate sensitive and specific assay performance despite modified bases, because they are ultimately selected after decoration with F and Q. This paper summarizes work in this area and presents some new examples of the engineered and naturally selected FRET-aptamers for detection of vitamin D.  相似文献   

20.
The aim of this study is to develop a selective adenosine aptamer sensor using a rational approach. Unlike traditional RNA aptamers developed from SELEX, duplex DNA containing an abasic site can function as a general scaffold to rationally design aptamers for small aromatic molecules. We discovered that abasic site-containing triplex DNA can also function as an aptamer and provide better affinity than duplex DNA aptamers. A novel adenosine aptamer sensor was designed using such a triplex. The aptamer is modified with furano-dU in the binding site to sense the binding. The sensor bound adenosine has a dissociation constant of 400 nM, more than tenfold stronger than the adenosine aptamer developed from SELEX. The binding quenched furano-dU fluorescence by 40%. It was also demonstrated in this study that this sensor is selective for adenosine over uridine, cytidine, guanosine, ATP, and AMP. The detection limit of this sensor is about 50 nM. The sensor can be used to quantify adenosine concentrations between 50 nM and 2 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号