首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bi-doped nano-crystalline TiO2 (Bi–TiO2) has been synthesized by sonocrystallization at low temperature. The Bi–TiO2 materials have narrower bandgaps than pristine TiO2, which endow them with significant visible light absorption. Accordingly, these materials had enhanced photocatalytic activity in the degradation of organic dye pollutants and the cyanotoxin microcystin-LR (MC-LR) under visible irradiation. It was found that degradation of MC-LR is rather efficient. After irradiation with visible light for 12 h the original MC-LR was removed completely, and 78% of the organic carbon was mineralized into CO2 after irradiation for 20 h. The hydroxyl radical (·OH) is the major active species responsible for the degradation reaction. Identified intermediates primarily originate from attack of ·OH radicals on the double bonds between C4 and C5 (C6 and C7) of Adda and the ethylenic bond of Mdha in MC-LR. Some peptide bonds are also broken with longer irradiation time.  相似文献   

2.
Microcomposites consisting of TiO2 (or Ce-doped TiO2) and ThO2 (0.5–2% of the TiO2 mass) are produced by sol-gel synthesis of TiO2 in presence of ThO2. X-ray diffraction study reveals the effects of ThO2 (compared to the ThO2-free TiO2, obtained by the same method) on the anatase interplanar distances, crystallites size and phase composition. The photocatalytic tests in presence of the composites under UV irradiation reveal an increase of the Malachite Green degradation rate constant. The effect depends on the Th relative content, temperature of annealing of the catalyst and addition of other doping agent. The highest photocatalytic activity is observed for TiO2 obtained at 550°C and containing 1% ThO2. The composite exhibits activity in dark, also. The presence of Ce4+ ions is not an obligatory requirement for the realization of the ThO2 effect. The reported results suggest that the radioactivity of the Th and/or its decay products is one of the main factors responsible for the increased photocatalytic activity of TiO2.   相似文献   

3.
TiO2 nanofibers were prepared from tetrabutyl titanate sol precursors by using electrospun method. X-ray diffraction (XRD) and atomic force microscope (AFM) were used to characterize their crystal structure and morphology feature. The results demonstrated that TiO2 nanofibers possessed anatase phase and the average diameter of TiO2 nanofibers was about 150 nm. The photocatalytic property of TiO2 nanofibers was evaluated for the photodecomposition of methyl orange solution. And TiO2 nanofibers exhibited high photocatalytic activities with transfer efficiency about 100% after 20 min.  相似文献   

4.
Nanosized TiO2 and nano-anatase TiO2 decorated on SiO2 spherical core shells were synthesized by using a sol–gel method. The synthesized pure TiO2 nano particle and TiO2 grafted on SiO2 sphere with various ratios have been characterized for their structure and morphologies by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectrophotometry (FTIR) and transmission electron microscopy (TEM). Their surface areas were measured using the BET method. The photocatalytic activity of all nanocomposites was investigated using methylene blue as a model pollutant. The synthesized TiO2/SiO2 particles appeared to be more efficient in the degradation of methylene blue pollutant, as compared to pure TiO2 particles.  相似文献   

5.
6.
The photocatalytic degradation of pefloxacin was studied using modified TiO2 as a photocatalyst. The effect of various parameters such as the amount of the photocatalyst, the initial concentration of pefloxacin, initial pH value on the process were investigated, and the optimal conditions were determined. The optimal amount of the photocatalyst is 0.3 g/L. The photodegradation rate of pefloxacin decreases with the increase of initial concentration. Alkaline medium is favorable for the photocatalytic degradation process. The primary photo-degradation products were analyzed by HPLC-ESI-MS/MS and thus the process mechanism was discussed.  相似文献   

7.
Epitaxially grown titanium dioxide (TiO2) nanofibers embedding single crystalline TiO2 nanowires (NWs) were successfully fabricated by electropinning poly(vinyl pyrrolidone)/ethanol solutions mixed with hydrothermally synthesized TiO2 NWs and titanium isopropoxide precursors and subsequently calcinating the electrospun nanofibers. Utilizing scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the morphologies of TiO2 NWs and nanofibers were investigated. High resolution TEM (HR-TEM) and selected area electron diffraction (SAED) allowed us to indentify the fact that, during the calcination process under the optimized condition, titanium isopropoxide precursors were epitaxially crystallized on the surface of single crystalline TiO2 NWs. Based on the X-ray diffraction (XRD) experiments, it was also realized that the crystalline structure of hydrothermally synthesized TiO2 NWs and epitaxially crystallized TiO2 nanofibers is anatase and that TiO2 composite nanofibers embedding TiO2 NWs exhibited a higher crystallinity than the pristine TiO2 nanofibers. Additionally, ultraviolet visible (UV–Vis) spectra of nanofibers indicated that optical properties of TiO2 nanofibers can be tuned by introducing the single crystalline TiO2 NWs.  相似文献   

8.
In the current study, a nanophotocatalyst doped with of TiO2 and Fe2O3 nanoparticles supported on Iranian clinoptilolite was synthesized and characterized by XRD, XRF, SEM, and EDX analyses. The results suggested the successful loading of TiO2 and Fe2O3 nanoparticles onto the surface of clinoptilolite. The SEM images confirmed the average size of nanoparticles deposited on zeolite, which was about 20–40 nm. Furthermore, application of the synthesized photocatalyst in photocatalytic degradation of Acid Black 172 dye was studied using the Taguchi method and the chosen parameters were as follows: pH (2–7), dye concentration (50–200 mg/l), irradiation time (30–120 min), and catalyst dosage (0.5–1.5 g/l). The results indicate that dye concentration, pH, and irradiation time are respectively the most effective factors in these experiments while with the minimum dosage of the catalyst (0.5 g/l), up to 90 % removal efficiency could be achieved. The optimum value for each parameter was pH = 2, dye concentration = 50 mg/l, catalyst dosage = 1 g/l and irradiation time = 60 min, and the dye removal efficiency reached up to 100 % at these optimal conditions. Furthermore, after five-times recycling and reusing the catalyst, the efficiency of the photocatalytic degradation was reduced from 91.5 to 65.9 %, which is still an acceptable value.  相似文献   

9.
The photocatalytic activity of S-doped TiO2 powder depends on the S content. To synthesize S-doped TiO2 powders with high S content, solvothermal processes were used in this work. The S-doped TiO2 powder contains 2.0 M% sulfur and has an absorption edge of 460 nm (2.7 eV). The pure TiS2 powder also synthesized by a solvothermal process has an absorption edge of 595 nm (2.08 eV) and broad absorption above 595 nm. The photocatalysis experiments indicate that the degradation of methyl orange is associated with the light adsorption edge. The photocatalytic activity is much larger for the pure TiS2 powder than for partially S-doped TiO2 powder.  相似文献   

10.
NiS/TiO2 nano-sheet films (NiS/TiO2 NSFs) photocatalysts were prepared by loading NiS nanoparticles as noble metal-free cocatalysts on the surface of TiO2 films through a solvothermal method. The prepared samples were characterized by XRD, SEM, EDS, UV–Vis absorption spectra and XPS analysis. The photocatalytic H2 evolution and photoluminescence spectroscopy (PL) experiments indicated that the NiS cocatalysts could efficiently promote the separation of photogenerated charge carriers in TiO2 and consequently enhance the H2 evolution activity. The hydrogen yield obtained from the optimal sample reached 4.31 μmol cm–2 at 3.0 h and the corresponding energy efficiency was about 0.26%, which was 21 times higher than that of pure TiO2 NSF. A possible photocatalytic mechanism of NiS cocatalyst on the improvement of the photocatalytic performance of TiO2 NSF was also proposed.  相似文献   

11.
Bare TiO2 and Cu-doped TiO2 nanoparticles with different nominal doping amounts of Cu ranging from of 0.5 to 5.0 mol% were synthesized using the modified sol–gel method. The samples were physically characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller-specific surface area, UV–Vis diffuse reflectance spectroscopy, zeta potential, X-ray photoelectron spectroscopy, inductively coupled plasma, and photoluminescence techniques. The Cu-doped TiO2 exhibited good photocatalytic activity in mineralization of oxalic acid and formic acid under visible light irradiation. Photomineralization of oxalic and formic acids under visible light irradiation revealed greatly enhanced photoactivity exhibited by the 2.0 mol% Cu-doped TiO2 photocatalyst compared to bare TiO2 . The enhanced photocatalytic performance arises from copper ion doping in the TiO2 structure, leading to an extended photoresponsive range, enhanced photogenerated charge separation, and transportation efficiency.  相似文献   

12.
SiO2/TiO2 hybrid nanofibers were prepared by electrospinning and applied for photocatalytic degradation of methylene blue (MB). The phase structure, specific surface area, and surface morphologies of the SiO2/TiO2 hybrid nanofibers were characterized through thermogravimetry (TG), X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) analysis, scanning electron microscopy (SEM), etc. XRD measurements indicated that doping of silica into TiO2 nanofibers can delay the phase transition from anatase to rutile and decrease the grain size. SEM and BET characterization proved that silica doping can remarkably enhance the porosity of the SiO2/TiO2 hybrid nanofibers. The MB adsorption capacity and photocatalytic activity of the SiO2/TiO2 hybrid nanofibers were distinguished experimentally. It was found that, although increased silica doping content could enhance the MB adsorption capacity, the intrinsic photocatalytic activity gradually dropped. The SiO2 (10 %)/TiO2 composite nanofibers exhibited the highest MB degradation rate, being superior to SiO2 (20 %)/TiO2 or pure TiO2.  相似文献   

13.
Nanostructures TiO2–SiO2 photocatalysts were successfully synthesized using the sol-gel method, hydro-calcination, co-precipitation and room-temperature solid-phase synthesis technology. X-ray powder diffraction pattern (XRD), Fourier transform infrared spectrum (FTIR), photoluminescence (PL) spectra, thermal analyses (TG–DTA), scanning electron micrographs (SEM), X-ray photoelectron spectroscopy (XPS), and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used to characterize the as-synthesized catalysts. Photocatalytic performances of the catalysts were evaluated by the degradation of methyl orange (MO) under s imulated natural light and the degradation rate of MO is 97.2%. The composites showed a good stability: after five recycling runs there are no significant decreases in the photocatalytic activity. The photodegradation of methylene blue, rhodamine B, methyl violet, naphthol green B, basic fuchsin, malachite green, and methyl red were also tested, and the degradation rate of dyes could reach over 94.2 %. A possible mechanism for the photocatalysis with the TiO2–SiO2 was proposed.  相似文献   

14.
Fluorine-modified TiO2 nan oparticles were synthesized by introducing TiF4 as a fluorine source either before or after the sufficient hydrolysis and condensation of Ti(OEt)4. The photocatalytic activity of the fluorine-modified catalysts was found to be greatly affected by the fluorine position in TiO2 nanoparticles. When TiF4 and Ti(OEt)4 hydrolyzed with synchronization, the fluorine tended to be doped in the lattice. The formation of Ti3+ defects could result in charge recombination in bulk and bring down the photocatalytic activity. In contrast, if TiF4 was introduced after the sufficient hydrolysis and condensation of Ti(OEt)4. Ti−F bonds could exist mainly on the TiO2 particles surface, which not only prevented the growth of anatase crystals but also facilitated the transfer of organic compounds from solution to catalyst surface by reducing the hydrophilic properties.  相似文献   

15.
Zeolite-based photocatalysts were prepared by the sol-gel and deposition methods. The photocatalysts were characterised by X-ray diffraction, nitrogen adsorption-desorption isotherms, FTIR spectroscopy, scanning electron microscopy and energy-dispersive X-ray spectrometry. The activity of the prepared photocatalysts was evaluated by the UV-induced degradation of acid blue 92, a textile dye in common use. The effect of various parameters, such as catalyst concentration, initial dye concentration, thiosulphate concentration and pH, on the rate and efficiency of the photocatalytic degradation of acid blue 92 was investigated. The results showed that each parameter influenced the degradation rate and efficiency in a particular way. It was also found that, under optimised conditions, Ag/AgBr/TiO2/zeolite exhibited the highest photocatalytic performance. A comparison of catalytic activity when exposed to visible light under the same conditions showed that the photocatalysts containing AgBr had the highest activity.  相似文献   

16.
The degradation of ofloxacin (OFX) at low concentration in aqueous solution by UVA-LED/TiO2 nanotube arrays photocatalytic fuel cells (UVA-LED/TiO2 NTs PFCs) was investigated. TiO2 nanotube arrays (TiO2 NTs) photoanode prepared by anodization-constituted anatase–rutile bicrystalline framework. The results indicated that the degradation efficiency of OFX by UVA-LED/TiO2 NTs PFC was significantly enhanced by 14.3% compared with UVA-LED/TiO2 NTs photocatalysis. The pH affected the degradation efficiency markedly; the highest degradation efficiency (95.0%) and the pseudo-first-order reaction rate constant k value (0.049 min?1) were achieved in neutral condition (pH 7.0). The degradation efficiency increased with the increasing concentration of dissolved oxygen (DO) in the UVA-LED/TiO2 NTs PFC. The main reactive species of OFX degradation are positive holes (h+) and superoxide ion radicals (O 2 ·? ) in a DO sufficient condition. Furthermore, the possible pathways of OFX degradation were proposed.  相似文献   

17.
Hierarchically nanostructured, porous TiO2(B) microspheres were synthesized by a microwave-assisted solvothermal method combined with subsequent heat treatment in air. The materials were carefully characterized by scanning and transmission electron microscopy, X-ray diffraction, CO2 adsorption, and a range of spectroscopies, including Raman, infrared, X-ray photoelectron and UV-Vis spectroscopy. The hierarchical TiO2(B) particles are constructed by ultrathin nanosheets and possess large specific surface area, which provided many active sites for CO2 adsorption as well as CO2 conversion. The TiO2(B) nanostructures exhibited marked photocatalytic activity for CO2 reduction to methane and methanol. Anatase TiO2 and P25 were used as the reference photocatalysts. Transient photocurrent measurement also proved the higher photoactivity of TiO2(B) than that of anatase TiO2. In-situ infrared spectrum was measured to identify the intermediates and deduce the conversion process of CO2 under illumination over TiO2(B) photocatalyst.  相似文献   

18.
We analyzed the dielectric pellet bed discharge-photocatalyst hybrid process for NO and SO2 removal. A cylindrical-wire type discharge reactor was packed with glass beads as dielectric pellets and the plasmas were generated by dielectric pellet bed discharge. The TiO2 photocatalysts were coated onto the glass beads by the dip-coating method and were activated by the light from discharge. Experiments were carried out for three cases: NO removal only, SO2 removal only, and simultaneous NO and SO2 removal. As the voltage applied to the plasma reactor increased, or as the residence time increased, the NO and SO2 removal efficiencies increased. With increasing initial NO and SO2 concentrations, the NO and SO2 removal efficiencies decrease. The removal efficiencies for simultaneous NO and SO2 removal are lower than those for NO only or SO2 only.  相似文献   

19.
Nanocrystalline TiO2 powders in the anatase, rutile, and mixed phases prepared by hydrolysis of TiCl4 solution were of ultrafine size (<7.2 nm) with high specific surface areas in the range 167 to 388 m2/g. In the photocatalytic degradation of phenol as model reaction, the photocatalytic properties of TiO2 nanoparticles were evaluated by use of UV–vis absorption spectroscopy and total organic carbon (TOC) content. The synthetic mixed-phase TiO2 powder calcined at 400 °C had higher activity than pure anatase or rutile; it degraded more than 90% phenol to CO2 (evaluated by TOC) after irradiation with near UV light for 90 min at a catalyst loading of 0.4 g/L. The TOC results indicated that rutile TiO2 crystallites of particle size 7.2 nm resulted in much better photocatalytic performance than particles of larger size. This result suggested that some intermediates, not determined by UV–vis absorption spectroscopy, existed in the solution after the photocatalytic process over the rutile TiO2 photocatalysts of larger crystallite size.  相似文献   

20.
Titania thin films were synthesized by sol–gel dip-coating method with metallic Ni nanoparticles synthesized separately from an organometallic precursor Ni(COD)2 (COD = cycloocta-1,5-diene) in presence of 1,3-diaminopropane as a stabilizer. Titania was obtained from a titanium isopropoxide precursor solution in presence of acetic acid. A Ni/TiO2 sol system was used to coat glass substrate spheres (6, 4 and 3 mm diameter sizes), and further heat treatment at 400 °C was carried out to promote the crystallization of titania. XRD analysis of the TiO2 films revealed the crystallization of the anatase phase. Transmission Electron Microscopy (TEM) and High Resolution TEM studies of Ni nanoparticles before mixing with the TiO2 solution revealed the formation of Ni nanostructures with an average size of 5–10 nm. High-angle annular dark-field images of the Ni/TiO2 system revealed well-dispersed Ni nanoparticles supported on TiO2 and confirmed by AFM analysis. The photocatalytic activity of the Ni/TiO2 films was evaluated in hydrogen evolution from the decomposition of ethanol using a mercury lamp for UV light irradiation. Titania films in presence of Ni nanoparticles show higher efficiency in their photocatalytic properties in comparison with TiO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号