首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasma supported combustion   总被引:9,自引:0,他引:9  
Oxidation of molecular hydrogen and different hydrocarbons in stoichiometric mixtures with air and oxygen in the pulsed nanosecond discharges was studied at room temperature, and the detailed kinetics of the process has been numerically investigated. In the discharge afterglow, the reactions including electron-excited particles play a dominant role for the time up to 100 ns, ion–molecular reactions—for the time of microsecond range, and reactions including radicals mostly contribute for the time interval of several milliseconds. The principal role of processes with formation of excited components that support the development of the chain mechanism of oxidation has been shown. The spatial uniformity of the gas-mixture combustion initiated by a high-voltage nanosecond volume discharge is investigated at gas pressures of 0.3–2.4 atm and temperatures of 1000–2250 K. The self-ignition time and the time of discharge-induced ignition are determined. It is found that the discharge significantly (by 600 K) decreases the ignition temperature with very low energy in the discharge (10−2 J/cm3). The influence of gas excitation by a pulsed nanosecond discharge with a high-voltage pulse amplitude up to 25 kV on the properties of a premixed propane–air flame has been investigated over a wide range of the equivalence ratios (0.4–5). It was experimentally found that the flame’s blow-off velocity increased more than twice at a discharge energy input less than 1% of the burner power. Efficient production of active radicals under the action of a barrier discharge has been observed. The increase in the flame’s propagation velocity is explained by the production of atomic oxygen in a discharge by the quenching of electronically excited molecular nitrogen N2 and the dissociation of molecular oxygen on electron-impact. A numerical model has been developed, which describes the influence of pulsed electric discharges on the ignition, combustion, and flame propagation.  相似文献   

2.
The rate constants of intramolecular intermode relaxation of the CO2 molecule (0001) in pure CO2 and in binary mixtures with He, Ar, H2, O2, N2, CO, NO, N2O, and H2O were measured in the temperature range 300–1000 K by means of a laser-induced luminescence method. It is shown that these relaxation rate constants K for all the gas mixtures investigated increase with increase in the gas temperature in this range; the most efficient in deactivation of the 0001 level are the collisions of CO2 molecules with H2O molecules; the mechanisms of relaxation of the 0001 level of CO2 and their channels depend not only on the temperature but also on the parameters of colliding particles; for each of the colliding partners of the CO2 molecules there is a certain temperature T c above which the temperature dependence of K is coordinated with the Landau–Teller dependence, and, moreover, the simpler the structure of the colliding partner of the CO2 molecule, the higher the temperature T c. Deviations from these dependences at temperatures T < T c are attributed to the influence of intermolecular forces of attraction, change of relaxation channels, and formation of molecular clusters. For all the colliding partners of the CO2 molecules, the interaction radii are determined from the intermolecular potentials of interaction used in the theoretical model.  相似文献   

3.
The vibrational kinetics in CO2-N2-H2O and CO-N2-H2O mixtures behind a reflected shock were investigated in the temperature range 500–1500°K by measurement of the intensity of the infrared emission of the gas. The vibrational relaxation time of nitrogen after collision with water molecules is obtained. The reasons for the disagreement of the presently available experimental data on the rate of this process are analyzed.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 84–89, June, 1978.  相似文献   

4.
A TE CO2 infrared emission apparatus with a half cavity is described . Via grating-tune the emissions p(12)–p(28), 00°1–10°0 of CO2 are obtained for gas mixtures of 15%CO2:20% N2:65%He and 20%CO2:15%N2:65%He at a total pressure of 60 kPa; the output energy and pulse width are 20–850 mJ and 60–70 ns, respectively.  相似文献   

5.
An assembled CO2 gas cluster ion beam system was assessed using a retarding field analyzer and a time-of-flight mass spectrometer. The CO2 gas was expanded to form gas clusters at the input pressure of 1–5 bar through a quartz Laval nozzle. At 4 bar, it is confirmed that the clusters consisted of about 500 molecules. Also the dependence of the mean cluster size distribution on source temperature was examined. At the low fluence of ion beam, an isolated gas cluster ion impact on solid surfaces was investigated. CO2 gas cluster ions were irradiated at the acceleration voltage of 40–60 kV on highly oriented pyrolytic graphite. Si with native oxide layers, and Cu film deposited on Si wafer. After very short exposure of cluster ions, induced hillocks with about 0.8–1 nm in height and 20 nm in width were outgrown from the impacted surfaces. After prolonged irradiation on Si and Cu/Si, humping was more developed and consequently the surface morphology seemed to be saturated because of gradual filling the gap between the hillocks.  相似文献   

6.
Tritium isotope separation by CO2-laser induced multiphoton dissociation of CTF3 is investigated. For the optimization of the performance of this working substance, trifluoromethane, the conditions to yield high-selectivity at high-operating pressure and low-critical fluence for complete dissociation are studied using our deconvolution procedure. The irradiation conditions are varied over the following ranges; wavenumber: 1052–1087 cm–1, gas temperature: 25°C to –78°C, CHF3 pressure: 5–205 Torr. The selectivities exceeding 104 are observed for 85–205 Torr CHF3 at –78°C by the irradiation at 1057 cm–1.  相似文献   

7.
The absorption by O2–CO2 mixtures in the region of the oxygen A-band near 760 nm has been measured in the laboratory at room temperature and for total pressures up to about 80 atm. As done in our previous studies for O2–N2 mixtures the contribution of the “allowed” A-band transitions have been calculated both accounting for line-mixing effects and disregarding this process. The differences between computed spectra and measured values enable extraction of the collision induced absorption (CIA) contribution, which, after removal of the O2–O2 contribution, provides, for the first time, the O2–CO2 CIA. It is shown that neglecting line-mixing overestimates absorption in the wings and underestimates absorption at the P and R branch peaks, and that the O2–CO2 CIA has an integrated intensity, in the A-band region, about 1.5 times larger than that of for pure O2 and almost 10 times greater than for O2–N2.  相似文献   

8.
Experimental and theoretical study of VI characteristics of UV pre-ionized TEA CO2 laser has been carried out for a variety of gas mixtures emitting different optical pulse shapes suitable for various applications. Coupled differential equations have been solved to model the pulse excitation circuit using the numerically calculated values of ionization coefficient (α), attachment coefficient (β) and drift velocity (Ud) as functions of E/N (i.e. electric field to neutral particle density ratio) for chosen gas mixture. Calculated and experimental V–I characteristics for gas mixtures (CO2:N2:He::1:2:3, 1:1:4, 1:1:5 and 1:0:4.7) show a good agreement. It has been shown that gas mixture has a dominant effect on the delay between pre-ionization and main discharge; thus, determining the long-term stability of discharge. The excitation pulse duration increases with increase in molecular content of gas mixture (i.e. amount of CO2 and N2 in gas mixture).  相似文献   

9.
The objective of this study was to gain understanding of the preignition oxidation of Al powders in CO2. The thermal behavior and reaction energy was studied using simultaneous thermogravimetric analysis and differential scanning calorimetry (TG–DSC). The particle morphology was examined at different stages of the process using field emission gun scanning electron microscopy (FEG-SEM) and transmission electron microscopy (TEM). The corresponding chemical changes were analyzed by X-ray diffraction spectrometry (XRD) and energy dispersion X-ray spectrometry (EDS). Dimensional properties of Al particles have a significant influence on the oxidation processes. Distinctly different properties were shown between nm-Al and μm-Al, where the reactions are found to occur at different temperature ranges. The powder behavior is controlled by the oxide layer that coats each particle and prevents exposure of the metal core to the reactive CO2 gas. The properties of the oxide layer are related to the particle size. Carbon has been shown to play an important role in the reacting Al–CO2 system. A new mechanism of nano-Al particle oxidation in CO2 under gradually increasing temperature was proposed.  相似文献   

10.
A study was made of the excitation of the working medium of a CO2-laser at a pressure of up to 8 atm by an electron beam of duration 15 · 10–9 sec. Results are given of the energy dissipation in a CO2:N2-13 gas medium in the whole range of pressures with E0/p = (18–38) V /cm · mm Hg. The dependences of the time of appearance of the stimulated radiation with respect to the current pulse are given.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 40–44, April, 1976.  相似文献   

11.
Conductivity of photo-CVD microcrystalline silicon (c-Si:H) in wide range of dopant gas concentration (10–53/SiH4, B2H6/SiH4<10–2) is investigated. As compared with a-Si:H, the conductivity of the film is improved more than two orders of magnitude by microcrystallization for a wide range of dopant concentration at a deposition temperature of as low as 150°C. This indicates the suitability of photo-CVD for low temperature processing. A conductivity minimum is found at a doping ratio of about B2H6/SiH4=1×10–5.  相似文献   

12.
Six FIR laser lines from CD3OH pumped by the 10R(36) and the 10R(18) CO2 laser lines are assigned to specific rotational energy levels in the excited C–0 stretch state. It is found that their upper laser levels are shifted by a Fermi resonance between the C–0 stretch vibration and the third and forth harmonics of the torsional mode. The Fermi resonance shifts are +0.332 cm–1 and +2.251 cm–1 for the upper laser levels pumped by the 10R(36) and the 10R(18) CO2 laser lines, respectively. Calculated frequencies of the pump and the laser transitions agree with those of the pump CO2 laser lines and the observed FIR laser lines within estimated accuracy.  相似文献   

13.
The energetic, spectral, and time characteristics of a high pressure CO2 laser at high pumping level are studied. It is shown that in the free generation regime high power radiation pulses R~ 10–8 sec in duration with a multifrequency spectrum can be obtained. Laser output characteristics are presented as functions of gas pressure, pumping energy, and resonator parameters.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 15–20, June, 1981.  相似文献   

14.
A short pulse (100 ns) high-energy x-ray source has been used to preionize a transversely excited carbon dioxide gas discharge laser of 600 cm3 active volume. The maximum output power of 60 MW in a 50 ns FWHM pulse was achieved from a CO2–N2–He–CO–Xe static gas mixture at 600 Torr pressure. The energy conversion efficiency was 6%.  相似文献   

15.
Measurements of electrical conductivity of NaCl 10–5 molar fr. CaCl2 (1–80)×10–5 molar fr. Na2CO3 crystals have been used to determine the temperature dependence of the solubility of CO3-ions over the temperature range from 75 to 530 °C. The total solubility of CO3-ions and that of [CO 3 2– -vacancy] complexes may be expressed by simple relationships andc ka=3·19× 10–2 exp (–0·25 eV/kT), resp. The heat of solution of complexes is equal to 0·25 eV and that of free CO 3 2– ions is higher than 1·2 eV. Under conditions of the thermal equilibrium between the solid solution and precipitate, the ratio of Na2CO3 and CaCO3 components in the precipitate has been calculated at various temperatures and CO3 concentrations.  相似文献   

16.
Oxy-fuel combustion of coal is a promising technology for cost-effective power production with carbon capture and sequestration that has ancillary benefits of emission reductions and lower flue gas cleanup costs. To fully understand the results of pilot-scale tests of oxy-fuel combustion and to accurately predict scale-up performance through CFD modeling, fundamental data are needed concerning coal and coal char combustion properties under these unconventional conditions. In the work reported here, the ignition and devolatilization characteristics of both a high-volatile bituminous coal and a Powder River Basin subbituminous coal were analyzed in detail through single-particle imaging at a gas temperature of 1700 K over a range of 12–36 vol % O2 in both N2 and CO2 diluent gases. The bituminous coal images show large, hot soot cloud radiation whose size and shape vary with oxygen concentration and, to a lesser extent, with the use of N2 versus CO2 diluent gas. Subbituminous coal images show cooler, smaller emission signals during devolatilization that have the same characteristic size as the coal particles introduced into the flow (nominally 100 μm). The measurements also demonstrate that the use of CO2 diluent retards the onset of ignition and increases the duration of devolatilization, once initiated. For a given diluent gas, a higher oxygen concentration yields shorter ignition delay and devolatilization times. The effect of CO2 on coal particle ignition is explained by its higher molar specific heat and its tendency to reduce the local radical pool. The effect of O2 on coal particle ignition results from its effect on the local mixture reactivity. CO2 decreases the rate of devolatilization because of the lower mass diffusivity of volatiles in CO2 mixtures, whereas higher O2 concentrations increase the mass flux of oxygen to the volatiles flame and thereby increase the rate of devolatilization.  相似文献   

17.
A new experimental technique is proposed to measure the product CO/CO2 ratio at the surface of spherical char particles during fluidized bed combustion. It is based on the measurement of the burning rate of a single char particle under low oxygen concentration conditions and on the use of an accurate prediction of the particle Sherwood number. This technique was applied to spherical char particles obtained from a bituminous coal which is characterized by a low attrition and fragmentation propensity. The product CO/CO2 ratio was measured at a bed temperature of 850 °C and at a fluidization velocity of 0.3 m/s in a lab-scale apparatus operated with a bed of 0.5–0.6 mm sand. The char particle size was varied between 2 and 7 mm and the inlet oxygen concentration between 0.1% and 2.0%. Results showed that under the experimental conditions investigated carbon was mostly oxidized to CO2 within the particle boundary layer, with a maximum fraction of carbon escaping as CO of 10–20% at the lowest oxygen concentrations and largest particle sizes.  相似文献   

18.
Carbon dioxide (CO2) gas analyzer can be widely used in many fields. A novel CO2 gas analyzer based on infrared ray (IR) absorption is presented sufficiently in this paper. Applying Lambert–Beer Law, a novel space-double-beam optical structure is established successfully. The optical structure includes an IR source, a gas cell, a bandpass filter with a transmission wavelength at 4.26 μm, another bandpass filter with a transmission wavelength at 3.9 μm, and two IR detectors. Based on Redial Basic Function (RBF) artificial neural network, the measuring model of IR CO2 analyzer is established with a high accuracy. A dynamic compensation filter is effectively designed to improve the dynamic characteristic of the IR CO2 analyzer without gas pump. The IR CO2 analyzer possesses the advantages of high accuracy and mechanical reliability with small volume, lightweight, and low-power consumption. Therefore, it can be used in such relevant fields as environmental protection, processing control, chemical analysis, medical diagnosis, and space environmental and control systems.  相似文献   

19.
It has been recently demonstrated that carbon nanotubes (CNTs) represent a new type of chemical sensor capable of detecting a small concentration of molecules such as CO, NO2, NH3.In this work, CNTs were synthesized by chemical vapor deposition (CVD) on the SiO2/Si substrate by decomposition of acetylene (C2H2) on sputtered Ni catalyst nanoparticles. Their structural properties are studied by atomic force microscopy, high-resolution scanning electron microscopy (HRSEM) and Raman spectroscopy. The CNTs grown at 700 °C exhibit a low dispersion in size, are about 1 μm long and their average diameter varies in the range 25–60 nm as a function of the deposition time. We have shown that their diameter can be reduced either by annealing in oxygen environment or by growing at lower temperature (less than 600 °C).We developed a test device with interdigital Pt electrodes on an Al2O3 substrate in order to evaluate the CNTs-based gas sensor capabilities. We performed room temperature current–voltage measurements for various gas concentrations. The CNT films are found to exhibit a fast response and a high sensitivity to NH3 gas.  相似文献   

20.
The vibrational kinetics of CW CO2 lasers has been analyzed within the framework of a temperature model. The necessity of taking into account the coupling of the vibrational modes of the CO2 molecule in determining the occupation numbers and the store of vibrational energy in individual modes is shown. Expressions that connect vibrational temperatures with the rates of excitation and relaxation of the lower vibrational levels of modes have been obtained. The ratios between the vibrational temperatures on selective excitation of the 00° 1 level and on excitation of CO2 molecules in an electric discharge as well as the character of the dependences of vibrational temperatures on the pumping-energy value are discussed.__________Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 1, pp. 72–79, January–February, 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号