首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main triacylglycerol (TAG) composition of different plant oils (almond, avocado, corn germ, grape seed, linseed, mustard seed, olive, peanut, pumpkin seed, sesame seed, soybean, sunflower, walnut and wheat germ) were analyzed using two different mass spectrometric techniques: HPLC/APCI-MS (high-performance liquid chromatography/atmospheric pressure chemical ionization mass spectrometry) and MALDI-TOFMS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry).Linear discriminant analysis (LDA) as a multivariate mathematical statistical method was successfully used to distinguish different plant oils based on their relative TAG composition. With LDA analysis of either APCI-MS or MALDI-MS data, the classification among the almond, avocado, grape seed, linseed, mustard seed, olive, sesame seed and soybean oil samples was 100% correct. In both cases only 6 different oil samples from a total of 73 were not classified correctly.  相似文献   

2.
The fatty acid profiles of frequently consumed oils and crops cultivated in Turkey were investigated in regard to omega fatty acids. Analyses were carried out on commercially sold oils, sunflower, olive, and fish oils, and oils extracted from fatty seeds of hazelnut, walnut, olive, sunflower, poppy, sesame, and pumpkin, and butter produced in Turkey. Hazelnut and olive oils were found to be rich in omega-9 (oleic acid 18:1), walnut, poppy seed, sesame, and pumpkin seed were rich in omega-6 (linoleic acid 18:2), and butter was rich in short chain fatty acids and omega-9. Fish oil, from mackerel, was the richest in omega-3 fatty acids and fatty acid diversity. There were some alterations between commercially sold oils and oils extracted from seeds in regard to fatty acid percentages and variety.  相似文献   

3.
A method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) for the determination of the fatty acid composition of vegetable oils is described and illustrated with the analysis of palm kernel oil, palm oil, olive oil, canola oil, soybean oil, vernonia oil, and castor oil. Solutions of the saponified oils, mixed with the matrix, meso-tetrakis(pentafluorophenyl)porphyrin, provided reproducible MALDI-TOF spectra in which the ions were dominated by sodiated sodium carboxylates [RCOONa + Na]+. Thus, palm kernel oil was found to contain capric acid, lauric acid, myristic acid, palmitic acid, oleic acid, and stearic acid. Palm oil had a fatty acid profile including palmitic, linoleic, oleic, and stearic. The relative percentages of the fatty acids in olive oil were palmitoleic (1.2 +/- 0.5), palmitic (10.9 +/- 0.8), linoleic (0.6 +/- 0.1), linoleic (16.5 +/- 0.8), and oleic (70.5 +/- 1.2). For soybean oil, the relative percentages were: palmitoleic (0.4 +/- 0.4), palmitic (6.0 +/- 1.3), linolenic (14.5 +/- 1.8), linoleic (50.1 +/- 4.0), oleic (26.1 +/- 1.2), and stearic (2.2 +/- 0.7). This method was also applied to the analysis of two commercial soap formulations. The first soap gave a fatty acid profile that included: lauric (19.4% +/- 0.8), myristic (9.6% +/- 0.5), palmitoleic (1.9% +/- 0.3), palmitic (16.3% +/- 0.9), linoleic (5.6% +/- 0.4), oleic (37.1% +/- 0.8), and stearic (10.1% +/- 0.7) and that of the second soap was: lauric (9.3% +/- 0.3), myristic (3.8% +/- 0.5), palmitoleic (3.1% +/- 0.8), palmitic (19.4% +/- 0.8), linoleic (4.9% +/- 0.7), oleic (49.5% +/- 1.1), and stearic (10.0% +/- 0.9). The MALDI-TOFMS method described in this communication is simpler and less time-consuming than the established transesterification method that is coupled with analysis by gas chromatography/mass spectrometry (GC/MS). The new method could be used routinely to determine the qualitative fatty acid composition of vegetable oils, and, when fully validated by comparison with standard analytical methodologies, should provide a relatively fast quantitative measurement of fatty acid mixtures and/or soap formulations that contain saturated and unsaturated hydrocarbon moieties.  相似文献   

4.
The regioisomers (sn-ABA/sn-AAB) of four triacylglycerols (TAGs), 18:2/18:2/18:1 (LLO), 18:2/18:1/18:1 (LOO), 16:0/18:1/18:1 (POO), and 16:0/16:0/18:1 (PPO), were quantified in lard, rapeseed oil, and sunflower seed oil by three different mass spectrometric methods using liquid chromatography (LC) and two different mass spectrometers. The ionization methods used were positive ion atmospheric pressure chemical ionization (APCI), positive ion electrospray ionization (ESI), and negative ion chemical ionization (NICI) with ammonia as the reagent gas. The LC/APCI-MS results with two different instrumentation types, LC/ESI-MS/MS and direct inlet ammonia NICI-MS/MS, were compared. The LC/APCI-MS method is based on the preferential formation of diacylglycerol (DAG) fragment ions during ionization by loss of sn-1/3 fatty acids from [M+H]+ ions. Similar formation of the DAG ions from [M+NH4]+ ions by collision-induced dissociation (CID) in the LC/ESI-MS/MS method and the [M-H--RCOOH-100]- ions from [M-H]- ions by CID in the direct inlet ammonia NICI-MS/MS method is observed. These methods were found to be useful and reliable in determining the regioisomeric structure of TAGs. No statistically significant differences were found between the results obtained with these methods. For LLO, LOO, and POO the proportions of sn-ABA isomer calculated from the results from all four methods were in rapeseed oil 7.7 +/- 6.5, 57.9 +/- 3.3, and 4.5 +/- 6.1%, respectively, and in sunflower seed oil 12.2 +/- 6.9, 34.0 +/- 5.2, and 1.4 +/- 2.8%, respectively. The proportions of ABA of POO and PPO in lard were 95.3 +/- 3.2 and 4.9 +/- 5.6%, respectively. This study also proved that the LC/APCI-MS/MS method examined is not applicable in the quantification of TAG regioisomers because the formation of DAG ions is not clearly dependent on the positional distribution of the fatty acids.  相似文献   

5.
Summary Five plant oils (peanut, pumpkin seed, sesame seed, soybean, and wheat germ) have been analyzed by high-performance liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (HPLC-APCI-MS). Gradient elution was performed with acetone-acetonitrile mobile phases on a short monolithic silica column (SilicaROD, RP-18e, 50 mm×4.6 mm). Identification of plant oil triacylglycerols (TAG) was based on the pseudomolecular ion [M+H]+ and the diacylglycerol [M−RCO2]+ fragments. Positional isomers of triacylglycerols were identified from the relative intensities of the [M-RCO2]+ fragments. Principal-component analysis, used to find similarities and differences between the different oils, indicated that the different plant oils could be clearly differentiated according to their triacylglycerol composition. Presented at Balaton Symposium '01 on High-Performance Separation Methods, Siófok, Hungary, September 2–4, 2001  相似文献   

6.
对烘烤前后南瓜籽中的化学成分进行分析并对比。采用同时蒸馏萃取装置萃取南瓜籽中的挥发性成分,采取超临界CO2萃取技术萃取南瓜籽油脂,并将其分为酸、碱、中性三个部分,用气相色谱-质谱联用方法分析其中化学成分并进行对比。结果表明,南瓜籽挥发性成分中含有多种醛类和酯类化合物,烘烤后产生了大量的烷基吡嗪,其在碱性部分中的相对含量比烘烤前提高14倍多,不饱和醛类化合物含量也有明显提高。南瓜籽油脂中的主要化学成分是油酸、亚油酸及其酯类。还含有生物活性功能成分如植物甾醇、角鲨烯和维生素E等。烘烤后除角鲨烯含量有所降低,维生素E、植物甾醇、亚麻酸等均有提高。  相似文献   

7.
Percentages of crude oil, protein, fibre and ash of grape seeds obtained from Turkish cultivars were of the ranges 5.40-10.79, 5.24-7.54, 17.6-27.1, and 1.2-2.6, respectively. The highest crude oil, crude protein and crude fibre were determined in Siyah pekmezlik, Karadimrit and Antep grape seeds. The energy values of seeds were established to be between 102.28 and 148.07?kcal?g(-1). Potassium and calcium contents of seed samples were found to be at high levels compared to sodium. The seeds contained 686-967?ppm of Na, 2468-3618?ppm of K and 2373-4127?ppm of Ca. The refractive index, relative density, acidity, saponification value, unsaponifiable matter and iodine value of seed oils were determined to be in the ranges 1.474-1.477 [Formula: see text], 0.909-0.934 25/25°C, 0.74-1.24%, 181-197, 0.91-1.66%, and 126-135, respectively. The main fatty acids were of the ranges 60.7-68.5% linoleic, 16.1-23.4% oleic and 8.0-10.2% palmitic. The highest percentages of linoleic acid (68.5%) was determined in Siyah pekmezlik seed oil.  相似文献   

8.
The Oxitester method, a novel, simple, and fast photometric method for the evaluation of the antioxidant capacity of olive oils, was validated and compared to the official oil stability index (Rancimat) method. The Oxitester method appeared to be a good alternative to the Rancimat method with adequate correlation for a wide range of virgin olive oil samples, including extrissima virgin olive oils (correlation coefficient 0.88), and extra virgin olive oils of increased acidity (free fatty acids >0.45%, correlation coefficient 0.89). Other quality factors (flavor, free fatty acids content, specific absorbance at 270 and 232 nm, peroxide value, and content of oleic, linoleic, and linolenic acids) were also measured and correlated to the antioxidant capacity values of the Oxitester and Rancimat methods. The Oxitester method, in contrast to the Rancimat method, was indicative of the flavor characteristics of the olive oils and the content of linolenic acid.  相似文献   

9.
The development of a two phase hollow fiber liquid-phase microextraction technique, followed by gas-chromatography-flame ionization detection (GC-FID) for the profiling of the fatty acids (FAs) (lauric, myristic, palmitic, stearic, palmitoleic, oleic, linoleic, linolenic and arachidic) in vegetable oils is described. Heptadecanoic acid methyl ester was used as the internal standard. The FAs were transesterified to their corresponding methyl esters prior to the extraction. Extraction parameters such as type of extracting solvent, temperature, extraction time, stirring speed and salt addition were studied and optimized. Recommended conditions were extraction solvent, n-tridecane; extraction time, 35 min; extraction temperature, ambient; without addition of salt. Enrichment factors varying from 37 to 115 were achieved. Calibration curves for the nine FAs were well correlated (r(2)>0.994) within the range of 10-5000 μg L(-1). The limit of detection (signal:noise, 3) was 4.73-13.21 ng L(-1). The method was successfully applied to the profiling of the FAs in palm oils (crude, olein, kernel, and carotino cooking oil) and other vegetable oils (soybean, olive, coconut, rice bran and pumpkin). The encouraging enrichments achieved offer an interesting option for the profiling of the minor and major FAs in palm and other vegetable oils.  相似文献   

10.
Trace elemental characterization of edible oils by ICP-AES and GFAAS   总被引:3,自引:0,他引:3  
A method for the determination of the inorganic profile in edible oils is proposed. The quantification of selected metals in various oils (olive, pumpkin seed, sunflower, sesame seed, hazelnut, grape, soya, rice oil) was carried out using microwave assisted digestion followed by ICP-AES and GFAAS. The detection power of the ICP-AES technique was sufficient for the determination of Ca, Fe, Mg, Na, and Zn. Since the samples contained very low amounts of Al, Cu, Co, Cr, K, Ni, Mn, and Pb, these elements were measured by GFAAS. Differences of metal concentrations for edible oils obtained in this preliminary study represent a starting basis for the development of an additional analytical procedure applicable for oil characterization.  相似文献   

11.
This paper describes a quantitative analytical procedure to determine the fatty acid composition in drying oils like linseed, walnut and poppy seed. The procedure required the enzymatic hydrolysis of the oil triacylglycerol families by the action of Candida rugosa lipase. The fatty acids (FFAs) produced (linolenic, myristic, linoleic, palmitic, oleic and stearic) were extracted with n-heptane and derivatized with α-bromoacetophenone. Their separation and quantitative determination were performed by high-performance liquid chromatography employing a C18 column and an isocratic elution method coupled to ultraviolet detection. The analytical enzymatic procedure is sensitive for < 0.5 μg/mL of FFAs in a reduced sample of 0.1 mg of drying oil.  相似文献   

12.
Quantitative analyses of fatty acids from five triacylglycerol products, coconut oil, palm kernel oil, palm oil, lard and cocoa butter, were carried out using two analytical methods: matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) and gas chromatography (GC), in an effort to validate the application of MALDI-TOFMS in quantitative fatty acid analysis. For the GC analysis, transmethylated products were used, whereas, for the MALDI-TOF analysis, saponified products were used. Under MALDI-TOF conditions, the acids were detected as sodiated sodium carboxylates [RCOONa + Na](+) consistent with the mode of ionization that was previously reported. Thus, the MALDI-TOF mass spectrum of saponified coconut oil showed the presence of sodiated sodium salts of caprylic acid (7.5 +/- 0.67, m/z 189), capric acid (6.9 +/- 0.83, m/z 217), lauric acid (47.8 +/- 0.67, m/z 245), myristic acid (20.4 +/- 0.51, m/z 273), palmitic acid (9.8 +/- 0.47, m/z 301), linoleic acid (0.9 +/- 0.07, m/z 325), oleic acid (4.8 +/- 0.42, m/z 327) and stearic acid (2.0 +/- 0.13, m/z 329). Saponified palm kernel oil had a fatty acid profile that included caprylic acid (3.5 +/- 0.59), capric acid (4.7 +/- 0.82), lauric acid (58.6 +/- 2.3), myristic acid (20.9 +/- 1.5), palmitic acid (7.2 +/- 1.1), oleic acid (3.8 +/- 0.62) and stearic acid (1.2 +/- 0.15). Saponified palm oil gave myristic acid (0.83 +/- 0.18), palmitic acid (55.8 +/- 1.7), linoleic acid (4.2 +/- 0.51), oleic acid (34.5 +/- 1.5), stearic acid (3.8 +/- 0.26) and arachidic acid (0.80 +/- 0.22). Saponified lard showed the presence of myristic acid (1.5 +/- 0.24), palmitic acid (28.9 +/- 1.3), linoleic acid (13.7 +/- 0.67), oleic acid (38.7 +/- 1.4), stearic acid (12.8 +/- 0.64) and arachidic acid (2.4 +/- 0.35). Finally, for saponified cocoa butter, the fatty acid distribution was: palmitic acid (32.3 +/- 1.0), linoleic acid (2.6 +/- 0.35), oleic acid (34.9 +/- 1.7) and stearic acid (30.3 +/- 1.6). Quantitative gas chromatographic analysis of the corresponding methyl esters from these triacylglycerol products yielded data that were mostly in agreement with the MALDI-TOFMS data. The MALDI-TOF experiment, however, proved to be superior to the GC experiment, particularly with regard to baseline resolution of unsaturated acids. Furthermore, the ability of MALDI-TOFMS to detect low concentrations of fatty acids rendered it more sensitive than the GC methodology.  相似文献   

13.
Mass spectrometry methodology to characterize drying oil used as binding media and varnishes in pictorial artworks, prior to conservation or restoration treatment, is proposed. The analytical treatment requires prior basic hydrolysis of the samples to release the fatty acids: caprylic, pelargonic, capric, sebacic, azelaic, suberic, eicosanoic, lauric, mirystic, palmitic, linolenic, linoleic, oleic and stearic, followed by separation from the matrix by a hexane/water extraction. After removing the solvent, the remaining solid is dissolved in potassium hydroxide, propanol and methanol. The mixture is directly infused into a mass spectrometer without any previous derivatization or separation steps. The detector is operated in electrospray negative ion mode and the [M-H](-) ions of the fatty acids enable identification of the acids. Obtained data for fatty acid ion abundances are analyzed by linear discriminant analysis. The drying oils studied (linseed, poppy seed and walnut) were satisfactorily distinguished. The analytical method shows adequate sensitivity, reproducibility, speed and ease. The proposed methodology has been successfully applied to samples from artistic samples belonging to the Cultural Heritage of Valencia (Spain).  相似文献   

14.
Herein we report a reversed‐phase high‐performance liquid chromatography tandem mass spectrometry (RP‐HPLC/MS/MS) method for the analysis of positional isomers of triacylglycerols (TAGs) in vegetable oils. The fragmentation behavior of [M + X]+ ions (X = NH4, Li, Na or Ag) was studied on a quadrupole‐time‐of‐flight (Q‐TOF) mass spectrometer under low‐energy collision‐induced dissociation (CID) conditions. Mass spectra that were dependent on the X+ ion and the nature and position of the acyl substituents were observed for four pairs of 'AAB/ABA'‐type TAGs, namely PPO/POP, OOP/OPO, LLO/LOL and OOL/OLO (where P is 16:0, palmitic acid; O is 18:1, oleic acid; and L is 18:2, linoleic acid). For the majority of [M + X]+ adducts, the loss of the fatty acid in the outer positions (sn‐1 or sn‐3) was favored over the loss in the central position (sn‐2), which enabled the determination of the fractional abundance of the isomers. Ratios of the intensity of fragment ions at various AAB/ABA compositions produced linear calibration curves with positive slopes, comparable to those obtained traditionally by ESI‐MS/MS of [M + NH4]+ adducts. The only exceptions were the [M + Ag]+ adducts of the PPO/POP system, which produced calibration curves with negative slopes. Sodium adducts provided the most consistent level of isomeric discrimination for the TAGs studied and also offered the most convenience in that they required no additive to the mobile phase. Therefore, calibration curve data derived from [M + Na]+ adducts were applied to the quantification of TAG regioisomers in sunflower and olive oils. The regiospecific analysis showed that palmitic acid was typically located at positions sn‐1 or sn‐3, whereas unsaturated fatty acids, oleic and linoleic acids were mostly found at the sn‐2 position. Copyright © 2010 Crown in the right of Canada. Published by John Wiley & Sons, Ltd.  相似文献   

15.
The present study was designed to determine the fatty acid composition and phytosterol contents of Turkish native olive cultivars, namely Kilis Yağlık and Nizip Yağlık cv. In this context, olive fruits from 34 locations were sampled and then screened for their components in comparison. Fifteen different fatty acids were found in both olive oils. In the order of abundance, the most important ones were oleic acid (18:1) > palmitic acid (16:0) > linoleic acid (18:2) > stearic acid (18:0). Significant differences were observed in the contents of oleic acid (18:1), palmitic acid (16:0), linoleic acid (18:2) but not for stearic acid content in comparison both oils (p < 0.01). There were significant differences in terms of unsaturated fatty acids, saturated fatty acids and polyunsaturated fatty acids (p < 0.01). The seven phytosterols – cholesterol, campesterol, stigmasterol, β ‐sitosterol, Δ‐5‐avenasterol, Δ‐7‐stigmastenol and Δ‐7‐avenasterol – were studied in both oil sources. The predominant sterols were β ‐sitosterol, Δ5‐avenasterol and campesterol in the samples analysed. However, no significant differences were found in the levels of the phytosterols between the two olive cultivars.  相似文献   

16.
The recently introduced technique of an atmospheric pressure photoionization (APPI) source coupled to quadrupole time-of-flight mass spectrometry (QqTOFMS) has been applied to fast olive oil fingerprinting on the basis of the accurate mass measurements obtained with this instrumentation. The key compounds can be characterized as [M+H]+ (produced by proton transfer) or as [M]+* (by charge transfer) ions in the mass spectra. [M+H]+ ions, however, show higher abundance, especially for triacylglycerols. Other ions present in APPI-MS are the acylium ion [RiCO]+ and [RiCO-H2O]+. This latter ion is absent in the electrospray ionization (ESI)-MS spectra, and this represents valuable complementary information. Several critical parameters in the APPI source were optimized such as LC eluent composition, ion spray voltage and, especially, declustering potential. APPI-QqTOFMS allows easy discrimination among different edible oils: olive, extra virgin olive, olive-pomace, hazelnut, sunflower, corn and several mixed oils, with high throughput (approximately 1 min per sample). Cluster analysis was applied to obtain the best experimental conditions for oil discrimination on the basis of declustering potential. Principal components analyses of these APPI-MS spectra show that the approach can be used for studies of olive oil adulteration with other oils, even in the case of hazelnut oil that exhibits a high chemical similarity with olive oil.  相似文献   

17.
海棠果种子油脂肪酸成分研究   总被引:2,自引:0,他引:2  
用乙醚萃取海棠果种子油,油脂皂化后的脂肪酸采用三氟化硼-甲醇溶液进行甲酯化.采用气相色谱-质谱-计算机联用技术分离、鉴定出7种主要脂肪酸,进一步采用气相色谱法定量测定脂肪酸,分别为肉豆蔻酸0.02%,软脂酸8.64%,硬脂酸8.96%,油酸37.7%,亚油酸20.1%,亚麻酸0.38%,二十碳酸0.85%.结果表明,海棠果种子油不饱和脂肪酸质量分数高达58%,值得作为不饱和脂肪酸食用油来源开发.  相似文献   

18.
The seed oils of Cistus laurifolius, C. salviifolius, and C. creticus were investigated for their fatty acids by employing capillary GC and capillary GC-MS. The results of this study indicated that palmitic, linoleic, linolenic, oleic, stearic, and behenic acids were found in all of these three seed oils of Turkish origin. In addition, an important polyunsaturated fatty acid, linoleic acid, was the major fatty acid in all of these oil samples.Published in Khimiya Prirodnikh Soedinenii in No. 6, pp. 433–434, November–December.This revised version was published online in April 2005 with a corrected cover date.  相似文献   

19.
This work presents a method for an efficient differentiation of olive oil and several types of vegetable oils using chemometric tools. Triacylglycerides (TAGs) profiles of 126 samples of different categories and varieties of olive oils, and types of edible oils, including corn, sunflower, peanut, soybean, rapeseed, canola, seed, sesame, grape seed, and some mixed oils, have been analyzed. High-performance liquid chromatography coupled to a charged aerosol detector was used to characterize TAGs. The complete chromatograms were evaluated by PCA, PLS-DA, and MCR in combination with suitable preprocessing. The chromatographic data show two clusters; one for olive oil samples and another for the non-olive oils. Commercial oil blends are located between the groups, depending on the concentration of olive oil in the sample. As a result, a good classification among olive oils and non-olive oils and a chemical justification of such classification was achieved.  相似文献   

20.
The production of pumpkin seed oil requires a roasting of the pumpkin seeds, at temperatures generally higher than 60°C. The roasting at elevated temperatures produces the typical taste of the pumpkin seed oil but may also be the source of a contamination with carcinogenic PAHs. Owing to their lipophilic character, their bioaccumulation, and their toxicity these compounds should be subject to mandatory monitoring. Since there is a lack of norms and legal limits for hot‐pressed oils, the limits set by the German Society of Fat Science of 25 μg/kg for the sum of 16 PAHs and 5 μg/kg for the heavy fraction for refined and cold‐pressed oils, such as olive oil and others, have to be applied. Sample preparation was performed by microwave‐assisted saponification with 1.5 M methanolic potassium hydroxide followed by a liquid‐liquid extraction and purification with sulfuric acid. A final clean up procedure was performed on activated silica gel combined with a preparative Bondesil‐cyano phase. For a selective measurement of the individual analytes, gas chromatography combined with mass spectroscopy was used in single ion monitoring mode. The overall analytical procedure was validated by systematic recovery experiments and by analyzing the certified reference material BCR CRM 458. Finally, this validated method was used for quality control of pumpkin seed oils from a producer co‐operative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号