首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A capillary LC-MS/MS system was evaluated for the absolute quantification of enkephalins in cerebrospinal fluid (CSF). On column focusing on a C18 trapping column, in-line with the analytical column, was used for preconcentration. Quantification was performed with a triple quadrupole instrument in the multiple reaction monitoring mode. Weighted linear regression analysis proves to be a good linearity in a dynamic range of two orders of magnitude. The method was validated, yielding calibration curves with correlation coefficients greater than 0.9914. Assay precision and accuracy were evaluated by direct injection of enkephalin fortified artificial CSF (aCSF) samples at three concentration levels. Mean accuracy of analysed concentrations was between 97.63 and 107.6%. LOD and LOQ were assessed at, respectively, 0.5 and 1 pmol/mL. Validation results show that it is feasible, with a capillary LC-MS/MS system, to quantify neuropeptides in the low femtomole range in aCSF. The obtained coefficients of variation, however, indicate that the use of appropriate isotopically labelled internal standards in neuropeptide quantification using narrow bore LC, combined with ESI-MS, may be highly beneficial.  相似文献   

2.
The present paper provides an overview on currently developed derivatization chemistries and techniques for determination of monoamine neurotransmitters serotonin (5-HT), norepinephrine (NE) and dopamine (DA) in microdialysis samples by microbore liquid chromatography with fluorescence detection. In mild alkaline conditions, 5-hydroxyindoles and catecholamines react with benzylamine (BA), forming highly fluorescent 2-phenyl-4,5-pyrrolobenzoxazoles and 2-phenyl(4,5-dihydropyrrolo) [2,3-f]benzoxazoles, respectively. However, for derivatization of DA a higher fluorescence intensity was achieved for reaction with 1,2-diphenylethylenediamine (DPE) rather than with BA, therefore for simultaneous determination of 5-HT, NE and DA in brain microdialysates, a two-step derivatization with BA followed by DPE was developed. The detection limits for 5-HT, NE and DA were 0.2, 0.08 and 0.13 fmol, respectively, in an injection volume of 20 microL, which corresponds to concentrations of 30, 12 and 19.5 pm, respectively in standard solution prior to derivatization. The experimental data presented demonstrate the ability of the technique to simultaneously monitor neuronally releasable pools of monoamine neurotransmitters in the rat and mouse brains at basal conditions and following pharmacological treatments or physiological stimuli. These techniques play an important role in drug discovery and clinical investigation of psychiatric and neurological diseases such as depression, schizophrenia and Parkinson's disease.  相似文献   

3.
采用微渗析活体取样技术和高效液相色谱安培检测法 ,测定了鼠脑纹状体中的黄嘌呤和次黄嘌呤。安培检测以玻碳电极为工作电极 ,检测电位为 0 .9V。在 5 .0× 1 0 - 7~ 1 .0× 1 0 - 4 mol/L浓度范围内 ,黄嘌呤和次黄嘌呤的浓度分别与峰电流呈良好的线性关系 ,检出限分别为 8 0× 1 0 - 8mol/L和 3 0× 1 0 - 7mol/L。该方法为生命科学的研究提供了一种新的分析手段  相似文献   

4.
A fast, simple and sensitive liquid chromatography/tandem mass spectrometry (LC/MS/MS) method was developed for the determination of acetylcholine in rat brain microdialysis samples. The chromatographic separation was achieved in 3 min on a reversed-phase column with isocratic conditions using a mobile phase containing 2% (v/v) of acetonitrile and 0.05% (v/v) of trifluoroacetic acid (TFA). A stable isotope-labeled internal standard was included in the analysis and detection was carried out with a linear ion trap mass spectrometer using selected reaction monitoring (SRM). Analyte ionization was performed with an atmospheric pressure chemical ionization (APCI) source without applying discharge current (atmospheric pressure spray ionization). This special ionization technique offered significant advantages over electrospray ionization for the analysis of acetylcholine with reversed-phase ion-pairing chromatography. The lower limit of quantification was 0.15 nM (1.5 fmol on-column) and linearity was maintained over the range of 0.15-73 nM, providing a concentration range that is significantly wider than that of the existing LC/MS methods. Good accuracy and precision were obtained for concentrations within the standard curve range. The method was validated and has been used extensively for the determination of acetylcholine in rat brain microdialysis samples.  相似文献   

5.
To investigate the pharmacokinetics of unbound ranitidine in rat blood and bile, multiple microdialysis probes coupled to a liquid chromatographic system were developed. This study design was parallel in the following groups: the control-group of six rats received ranitidine alone (10 and 30 mg/kg, i.v.), the treated-group rats were co-administered with ranitidine and cyclosporine (P-glycoprotein (P-gp) inhibitor) or quinidine (both organic cation transport (OCT) and P-gp inhibitors) in six individual rats. Microdialysis probes were inserted into the jugular vein and the bile duct for blood and bile fluids sampling, respectively. Ranitidine in the dialysate was separated by a reversed-phase C18 column (Zorbax, 150 mm x 4.6 mm i.d.; 5 microm) maintained at ambient temperature. Samples were eluted with a mobile phase containing acetonitrile-methanol-tetrahydrofuran-20 mM K2HPO4 (pH 7.0) (24:20:10:946, v/v), and the flow rate of the mobile phase was 1 ml/min. The optimal UV detection for ranitidine was set at wavelength 315 nm. Between 20 and 30 min after drug administration (10 or 30mg/kg), the ranitidine reached the maximum concentration in the bile. The bile-to-blood distribution ratio (AUC(bile)/AUC(blood)) was 9.8 +/- 1.9 and 13.9 +/- 3.8 at the dosages of 10 and 30 mg/kg, respectively. These studies indicate that ranitidine undergoes hepatobiliary excretion which against concentration gradient from bile-to-blood. In addition, the AUC of ranitidine in bile decreased in the treatment of cyclosporine or quinidine, which suggests that the hepatobiliary excretion of ranitidine was partially regulated by P-glycoprotein or organic cation transporter.  相似文献   

6.
To investigate the disposition of unbound cocaine in the rat blood, brain and bile, we demonstrate an in vivo multiple sampling microdialysis system coupled with liquid chromatography for cocaine assay and verified by tandem mass spectrometry. Three microdialysis probes were concurrently inserted into the jugular vein, bile duct and brain striatum of each anesthetized rat. After a period of 2 h post-surgical stabilization, cocaine (10 mg kg(-1)) was administered through the femoral vein. Separation of unbound cocaine from various biological fluids was applied to a reversed-phase C(18) column (250 x 4.6 mm I.D., 5 microm). The mobile phase consisted of acetonitrile--10 mm potassium dihydrogen phosphate buffer (25:75, v/v, pH 4.0) and 0.8% diethylamine at a flow rate of 1 mL min(-1). The UV detector wavelength was set at 235 nm. The results indicate that cocaine penetrates the blood--brain barrier with a rapid distribution. However, unbound cocaine in the bile dialysate was not detectable in the UV detection. We therefore use LC--tandem mass spectrometry to detect the bile fluid after cocaine administration (3 mg kg(-1), i.v.). The results indicate that cocaine goes through hepatobiliary excretion.  相似文献   

7.
A capillary liquid chromatographic column switching method has been developed for fast and sensitive determination of peptides in water samples. Sample volumes of 1 mL were loaded onto a (320 m I.D. ×30 mm) 10 m Kromasil C18 pre-column, providing on-line analyte enrichment, prior to back-flushed elution onto a (320 m I.D. ×150 mm) 3.5 m Kromasil C18 analytical column. Loading flow rates of 250 L/min and a mobile phase composition of acetonitrile/water/trifluoroacetic acid (22/77.9/0.1, v/v) provided a total analysis time of less than 25 minutes for the test peptides angiotensin II, bombesin, bradykinin, corazonin, neurotensin and substance P, using temperature programmed elution. In addition, solvent gradient elution and combined solvent gradient elution and temperature programming were explored. Using on-capillary UV detection at 210 nm resulted in a concentration limit of detection (cLOD) of about 1 ng/mL. The method was validated over the concentration range 1–100 ng/mL, yielding a coefficient of correlation of 0.997 or better. The within-assay (n=6) and between-assay (n=6) precisions of peak areas were on average 6% RSD and 5% RSD, respectively.When the method was applied to spiked chlorinated tap water samples, it was found that peptides containing methionine, tryptophan and cystine were oxidized. Identification of the oxidation products of the peptides in hypochlorite-treated water was done with positive electrospray ionization time-of-flight mass spectrometric detection.  相似文献   

8.
A sensitive liquid chromatography/electrospray ionisation tandem mass spectrometric (LC/ESI-MS/MS) method was developed for the analysis of acetylcholine and choline in microdialysis samples. A Ringer's solution that contains high (150 mM) concentrations of inorganic salts was used to extract acetylcholine and choline from a rat or mouse brain. The separation of acetylcholine, choline, an internal standard acetyl-beta-methylcholine, endogenous compounds and inorganic cations was achieved with hydrophilic interaction chromatography using a diol column. The eluent consisted of 20 mM ammonium formate (pH 3.3) and acetonitrile (20:80) which is favourable for the ESI process. Limits of detection (signal-to-noise (S/N) ratio = 3) of 0.02 nM (0.2 fmol) for acetylcholine and 1 nM (10 fmol) for choline were observed using standards diluted in Ringer's solution. A good linearity was obtained from the limit of quantitation: 0.1 nM (S/N ratio = 10) to 50 nM (r = 0.999) for acetylcholine and within the concentration range of 100-3500 nM (r = 0.998) for choline. The between-day repeatability of the method was good; RSD was 3.1% at 1 nM level of acetylcholine and 3.5% at 1000 nM level of choline. The recoveries for addition of 1 or 2.5 nM acetylcholine and 0.2 or 1 microM choline in microdialysis balancing samples were between 93 and 101% indicating that no suppressing endogenous compounds were co-eluting with acetylcholine or choline. The developed method was applied to the analysis of microdialysis balancing samples collected from rat and mouse brains.  相似文献   

9.
Solid-phase microextraction coupled with high-performance liquid chromatography was successfully applied to the analysis of nine phenylurea herbicides (metoxuron, monuron, chlorotoluron, isoproturon, monolinuron, metobromuron, buturon, linuron, and chlorbromuron). Polydimethylsiloxane-divinylbenzene (PDMS-DVB, 60 microm) and Carbowax-templated resin (CW-TPR, 50 microm) fibers were selected from four commercial fibers for further study because of their better extraction efficiencies. The parameters of the desorption procedure were studied and optimized. The effects of the properties of analytes and fiber coatings, carryover, duration and temperature of absorption, pH, organic solvent and ionic strength of samples were also investigated. External calibration with an aqueous standard can be used for the analysis of environmental samples (lake water) using either PDMS-DVB or CW-TPR fibers. Good precisions (1.0-5.9%) are achieved for this method, and the detection limits are at the level of 0.5-5.1 ng/ml.  相似文献   

10.
Hydroxytyrosol [4-(2-hydroxyethyl)-1,2-benzenediol] is a well known natural polyphenolic component with antioxidative effects from olive oil and an aglycone of acteoside. In order to examine the in vivo metabolism of acteoside to hydroxytyrosol and the distribution of hydroxytyrosol in the blood and brain, microdialysis coupled to a liquid chromatographic system was developed to evaluate the pharmacokinetics of free-form hydroxytyrosol in rat blood and brain. Probes were implanted in the jugular vein and the brain hippocampus for blood and brain sampling purposes. Hydroxytyrosol in the microdialysis samples was separated by a reversed-phase C18 column and eluted with a mobile phase containing acetonitrile – 2% acetic acid (pH 2.6) (12:88, v/v), using a flow rate for the mobile phase of 1 mL/min. Fluorescence detection for hydroxytyrosol was set at 281 nm and 316 nm for excitation and emission wavelengths, respectively. Hydroxytyrosol and endogenous interference could be resolved within 10 min by the developed chromatographic method. The results indicated that acteoside was metabolized immediately to hydroxytyrosol in vivo and eliminated rapidly from the blood, and hydroxytyrosol could enter the brain. The blood-to-brain distribution ratio was defined by dividing the area under concentration versus time (AUC) ratio of AUCbrain/AUCblood, which represents the AUC for brain and blood. The results suggested that the P-glycoprotein was not involved in the brain efflux transport of hydroxytyrosol.  相似文献   

11.
We have developed a system that couples an on-line microdialysis (MD) system with flow injection high-performance liquid chromatography (HPLC)-fluorescence detection for simultaneous measurement of the concentrations of malondialdehyde (MDA) and ofloxacin (OFL) in whole blood samples. The sample matrix was first cleaned with an MD system using an MD probe. A continuously flowing dialysate stream was derivatized on-line and auto-injected into a separation column. MDA and OFL were separated through a reverse-phase C18 column (250 mm × 4.6 mm) at a flow rate of 0.8 mL min−1 and then detected using a fluorescence detector (excitation: 532 nm; emission: 553 nm); the system's components were connected on-line using a valve control. Validation experiments demonstrated good linearity, precision, accuracy, and recovery. The precisions for the determinations of MDA and OFL, measured in terms of relative standard deviations, were 6.5% and 4.6%, respectively, for intra-day assays and 7.5% and 8.7%, respectively, for inter-day assays. The average recoveries of MDA and OFL spiked in plasma were each close to 100%. The use of this on-line MD-HPLC system permitted continuous monitoring of MDA and OFL in OFL-treated whole blood subjected to UV-A irradiation. Based on our results, the UV-A irradiation markedly increased the level of MDA in the OFL-treated whole blood.  相似文献   

12.
Tetramethylpyrazine (TMP) is one of the most important active ingredients of a Chinese herb Ligusticum wallichii Franchat, which is widely used for the treatment of cardiovascular diseases. Several factors may affect TMP exposure after topical administration, resulting in large variability and demanding further elucidation of drug distribution. This paper describes a new efficient reliable LC‐MS/MS assay for the determination of TMP in dermal microdialysate, where TMP was separated on an Agilent C18 column (3.5 µm, 100 mm × 2.1 mm i.d.) using a mixture of methanol, water and acetic acid (50:50:0.6, v/v/v) at a flow‐rate of 0.3 mL/min. The retention time was 1.89 min for TMP and 1.17 min for the internal standard (caffeine). Histological analysis confirmed an inflammatory response to the microdialysis probes and the presence of a collagen capsule. The membrane extraction efficiency (percentage delivered to the tissue space) for TMP was not altered through the implant lifetime. The validation and sample analysis results showed that the method is precise, accurate and well suited to support dermal microdialysis experiments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A sensitive microbore liquid chromatographic method combined with the minimally invasive technique of microdialysis was devised for simultaneously and continuously monitoring the levels of unbound blood and brain cefazolin in rats. Microdialysis probes were inserted into the jugular vein and brain striatum for blood and brain sampling, respectively. Chromatographic conditions consisted of a mobile phase of methanol-acetonitrile-100 mM monosodium phosphoric acid (20:10:70, v/v, pH 4.5) pumped through a microbore reversed-phase column at a flow rate of 0.05 mL/min. The ultraviolet detection wavelength was set at 270 nm. An on-line design allowed direct and continuous analysis of protein-free samples in the dialysate. Microdialysis probes, being home-made, were screened for acceptable in vivo recovery. Chromatographic resolution and detection were validated for response linearity as well as intra-day and inter-day variabilities. This method was then applied to pharmacokinetic profiling of protein unbound cefazolin in both the blood and brain following intravenous administration (10 mg/kg, i.v., n = 6). Rapid appearance of cefazolin in the rat brain striatal dialysate following drug injection suggested good blood-brain barrier penetration. According to a non-compartmental pharmacokinetics model, the area under the concentration (AUC) vs time ratio of cefazolin in rat brain and blood was 6%.  相似文献   

14.
Sensitive enantioselective liquid chromatographic assays using tandem mass spectrometric detection were developed and validated for the determination of S-cetirizine (S-CZE) and R-cetirizine (R-CZE) in guinea pig plasma, brain tissue, and microdialysis samples. Enantioselective separation was achieved on an alpha1-acid glycoprotein column within 14 min for all methods. A cetirizine analog, ucb 20028, was used as internal standard. Cetirizine and the internal standard were detected by multiple reaction monitoring using transitions m/z 389.1 --> 200.9 and 396.1 --> 276.1, respectively. The samples were prepared using protein precipitation with acetonitrile. For guinea pig plasma, the assay was linear over the range 0.25-5000 ng/mL for both S-CZE and R-CZE, with a lower limit of quantification (LLOQ) of 0.25 ng/mL. For the brain tissue and microdialysis samples, the assays were linear over the range 2.5-250 ng/g and 0.25-50 ng/mL, respectively, and the LLOQ values were 2.5 ng/g and 0.25 ng/mL, respectively. The intra- and inter-day precision values were < or =7.1% and < or =12.6%, respectively, and the intra- and inter-day accuracy varied by less than +/-8.0% and +/-6.0% of the nominal value, respectively, for both enantiomers in all the matrices investigated.  相似文献   

15.
Summary A sample preparation method has been developed for the determination of chlorinated phenols in water. The method is based on a supported liquid membrane extraction system connected on-line to liquid chromatography with electrochemical detection. The supported liquid membrane technique utilizes a porous PTFE membrane. The membrane is impregnated with an organic solvent which forms a barrier between two aqueous phases and enables selective extraction. The technique can easily be coupled in a flow system. In this investigation five chlorinated phenols (1–5 chlorine atoms) were extracted from natural water samples. Extraction for 30 minutes resulted in detection limits of approximately 25 ng L–1.  相似文献   

16.
A graphene oxide-based aerogel was synthesized and applied to the extraction and the determinations with the high-performance liquid chromatography-ultraviolet detector. After the characterization of the produced graphene-aerogel, it was utilized as a dispersive solid-phase extraction sorbent for risperidone extraction from plasma samples. Aerogels are materials with a large surface area-to-mass ratio and plenty of core with functional groups which can easily attach to the analytes to extract them to the second phase. The suggested method determined risperidone in plasma samples in the wide dynamic range from 20 ng/ml to 3 μg/ml. The limits of detection and quantification of the developed method were calculated as 2.4 and 8.2 ng/ml, respectively. As a novel feature, the developed method has no need to precipitate plasma proteins, improving the analytical performance of the analysis. Also, for the first time, the produced materials were utilized for the extraction of risperidone from the plasma samples. The obtained results revealed that the developed approach could be employed as an accurate method for the quantification of risperidone in real plasma samples.  相似文献   

17.
A sensitive and selective LC‐MS/MS method was developed and validated for the determination of aconitine in microdialysate and rat plasma. Extraction of plasma sample was conducted by use of 1% trichloracetic acid and acetonitrile solution with 10 ng/mL internal standard (propafenone) spiked. Microdialysates were analyzed without sample purification. After sample preparation, 2 µL were injected and separated with an isocratic mobile phase consisting of acetonitrile:0.1% formic acid (60:40, v/v) at a flow rate of 0.3 mL/min. The Agilent G6410A triple quadrupole LC/MS system was operated under the multiple‐reaction monitoring mode (MRM) using the electrospray ionization technique in positive mode. Overall, the assay exhibited good precision and accuracy. The diffusion properties of aconitine investigated in in vitro microdialysis experiments revealed unfavourable concentration dependence avertable by keeping a constant pH 5.77 using isotonic phosphate buffer solution as perfusate. The mean relative recoveries were 48.23% [coefficient of variation (CV 4.47%)] and 55.38% (CV 2.89%) for retrodialysis and recovery experiments, respectively. The in vivo recovery of aconitine was 34.48% (CV 3.05%) and was stable over the 6 h study period. Following characterization of aconitine both in vitro and in vivo microdialysis, the developed setting is suitable for application in pharmacokinetics and pharmacodynamics studies. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
19.
An isocratic high-performance liquid chromatographic method is developed for the determination of phospholipids in biological samples using a muPorasil silica column and a mobile phase of acetonitrile-methanol-85% phosphoric acid (90:3:1, v/v/v) at a flow rate of 0.80 mL/min. The effluent is monitored by a UV detector at 203 nm. With the method reported in this paper, phosphatidylinostol, phosphatidylserine, phosphatidylethnolamine, and phosphatidylcholine in biological samples are separated and detected successfully. The method is simple, rapid, and has excellent precision.  相似文献   

20.
建立了一种微透析活体取样与高效液相色谱-电化学检测法联用技术测定自由活动大鼠脑中7种单胺类神经递质的方法.高效液相色谱采用Aglient XDB-C18柱,流动相为pH 3.0的0.1 mol/L H3PO4-NaH2PO4缓冲液与甲醇的混合液(90:10,V/V),流速为0.3 mL/min,电化学检测的工作电极为玻...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号