首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variable temperature studies of the infrared spectra (3500–400 cm−1) of 1-pentyne, CH3CH2CH2CCH, dissolved in liquid xenon (−55 to −100°C) and liquid krypton (−105 to −150°C) have been recorded. These data indicate that the anti (methyl group trans to the acetylenic group) and gauche conformers have relative concentrations that vary with the temperature, i.e. enthalpy nonzero. Utilizing seven sets of conformer pairs for the xenon solution and ten sets of conformer pairs for the krypton solution, the enthalpy difference has been determined to be 50±6 cm−1 (0.60±0.07 kJ/mol) and 45±4 cm−1 (0.54±0.05 kJ/mol), respectively, with the anti conformer the more stable form. Because of two equivalent gauche forms, this conformer is estimated to be in higher abundance at 61±1% in the xenon solution and 62±1% in the krypton solution. Optimized geometries and conformational stabilities have been obtained from ab initio calculations with basis sets 6-31G(d), 6-311+G(d,p), 6-311+G(2d,2p) and 6-311+G(2df,2pd) with full electron correlation by the perturbation method to second order (MP2). All of the calculations predict the gauche rotamer to be the more stable form with a high value of 181 cm−1 from the MP2/6-311+G(d,p) calculations and a low value of 107 cm−1 from the MP2/6-311+G(2d,2p) calculation. The ro adjusted structural parameters have been obtained from a combination of the microwave rotational constants and ab initio predicted parameters. The values are compared to the recently reported values from an electron diffraction study where the value for the CC bond distance appears to be too long. The results are discussed and the conformational stability is compared to those obtained for some similar molecules.  相似文献   

2.
Variable temperature (−55 to −135°C) studies of the infrared spectra (3500–400 cm−1) of 1-bromo-2-fluoroethane, BrCH2CH2F, dissolved in liquid krypton and xenon have been recorded. From these data, the enthalpy difference has been determined to be 108±9 cm−1 (1.296±0.113 kJ/mol) and 112±8 cm−1 (1.346±0.098 kJ/mol) from the krypton and xenon solutions, respectively, with the trans conformer the more stable rotamer. Complete vibrational assignments are presented for both conformers which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G* calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G* and/or MP2/6-31G* ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate. Structural parameters and conformational stability have also been obtained from MP2/6-311+G** calculations. Combining the ab initio predicted structural parameters with the microwave rotational constants, ro parameters have been obtained for the gauche conformer.  相似文献   

3.
The infrared spectra (3200–30 cm−1) of gaseous and solid ethyl fluorosilane, CH3CH2SiH2F, have been recorded. Additionally, the Raman spectra (3200–30 cm−1) of the liquid and solid have been recorded and quantitative depolarization values obtained. Both the gauche and trans conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 54±16 cm−1 (646±191 J/mol) with the gauche conformer the more stable form. This is consistent with the predictions from ab initio, MP2/6-311+G(2d,2p), calculation as well as those with smaller basis sets with full electron correlations. A complete vibrational assignment is proposed for both the trans and gauche conformers based on infrared band contours, relative intensities, depolarization values, and group frequencies, which are supported by normal-coordinate calculations utilizing the force constants from MP2/6-31G(d) ab initio calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311+G(2d,2p) at levels of restricted Hartree–Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The adjusted r0 parameters have been obtained for both conformers from a combination of the previously reported rotational constants with ab initio predicted values. All results are compared to similar quantities of some corresponding molecules.  相似文献   

4.
The infrared spectra (3500 to 40 cm−1) of gaseous and solid and the Raman spectra (3500 to 30 cm−1) of liquid and solid 1-fluorosilacyclobutane, c-C3H6SiFH, have been obtained. Both the axial and equatorial conformers with respect to the fluorine atom have been identified in the fluid phases. Variable temperature (−105 to −150 °C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 282 ± 27 cm−1 (3.37 ± 0.32 kJ/mol), with the equatorial conformer the more stable form and the only conformer remaining in the annealed solid. At ambient temperature there is approximately 21 ± 2% of the axial conformer present in the vapor phase. From isolated Si–H stretching frequencies the Si–H (r0) distances are calculated to be 1.484 and 1.485 Å for the equatorial and axial conformers, respectively. Structural parameters have been predicted from MP2/6-311 + G(d,p) ab initio calculations and the adjusted r0 parameters for both conformers were obtained from a combination of the ab initio predicted values and the six previously reported microwave rotational constants. Along with the Si–H bond distance, the Si–C, and C–C distances of 1.865(5), and 1.571(5) Å, respectively, for the equatorial conformer are significantly different from the values for these parameters previously reported from an election diffraction study. Both the SiC and CC distances and the SiF distance are longer by 0.002 and 0.004 Å, respectively, for the axial conformer. Structural parameters have also been obtained for silacyclobutane, c-C3H6SiH2 and ethylsilylfluoride, CH3CH2SiH2F, from combined ab initio predicted values and previously reported rotational constants. Several of these newly determined parameters are significantly different from those previously reported for both molecules. Complete equilibrium geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been determined for both rotamers by ab initio calculations employing the 6-31G(d) basis set at the level of Moller–Plesset (MP) to second order. A complete vibrational assignment supported by normal coordinate calculations is proposed for the equatorial conformer, and several of the fundamentals of the axial conformer have also been identified. The results are discussed and compared to corresponding quantities for some similar molecules.  相似文献   

5.
Variable temperature (–55 to –150°C) studies of the infrared spectra (3500 to 400 cm–1) of 1-fluoropropane, CH3CH2CH2F, dissolved in liquid krypton and xenon have been recorded. Utilizing three conformer pairs in the krypton solution and four conformer pairs in the xenon solution, enthalpy differences of 104±6 cm–1 (1.24±0.07 kJ/mol) and 99±5 cm–1 (1.16±0.06 kJ/mol) were obtained from the krypton and xenon solutions, respectively, with the gauche form the more stable conformer. From these data it is estimated that 24% of the trans forms is present at ambient temperature. The conformational stabilities, harmonic force constants, fundamental frequencies, infrared intensities and Raman activities have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations and these quantities have been compared to the experimental values when appropriate. The optimized geometries have also been obtained with several different ab initio basis sets up to MP2/6-311+G(2d,2p). The r0 structural parameters have been obtained by combining the ab initio data with the previously reported rotational constants for both conformers. The results are compared to the corresponding results for some similar molecules.  相似文献   

6.
Variable temperature (−105 to −150 °C) studies of the infrared spectra (3500–400 cm−1) of 1,1-dimethylhydrazine, (CH3)2NNH2, in liquid krypton have been carried out. No convincing spectral evidence could be found for the trans conformer which is expected to be at least 600 cm−1 less stable than the gauche form. The structural parameters, dipole moments, conformational stability, vibrational frequencies, and infrared and Raman intensities have been predicted from MP2/6-31G(d) ab initio calculations. The predicted infrared and Raman spectra are compared to the experimental ones. The adjusted r0 parameters from MP2/6-311+G(d,p) calculations are compared to those reported from an electron diffraction study. The energy differences between the gauche and trans conformers have been obtained from MP2 ab initio calculations as well as from density functional theory by the B3LYP method calculations from a variety of basis sets. All of these calculations indicate an energy difference of 650–900 cm−1 with the B3LYP calculations predicted the larger values. The potential function governing the conformational interchange has been predicting from both types of calculations and comparisons have been made. The barrier to internal rotation by the independent rotor model of the inner methyl group is predicted to have a value of 1812 cm−1 and that of the outer one of 1662 cm−1 from ab initio MP2/6-31G(d) calculations. These values agree well with the experimentally determined values of 1852±16 and 1558±12 cm−1, respectively, from a fit of the torsional transitions with the coupled rotor model. For the coupled rotor model the predicted V33 (sin 3τ0 sin 3τ1 term) value which ranged from 190 to 232 cm−1 is in reasonable agreement with the experimental value of 268±3 cm−1 but the predicted V33 (cos 3τ0 cos 3τ1 term) value of −73 to −139 cm−1 is 25% smaller and of the opposite sign of the experimental value of 333±22 cm−1. These theoretical and spectroscopy results are compared to similar quantities of some corresponding molecules.  相似文献   

7.
Variable temperature (−55 to −100 °C) studies of the infrared spectra (3200 to 100 cm−1) of cyclopropylmethyl isocyanate, c-C3H5CH2NCO, dissolved in liquefied xenon, have been carried out. The infrared spectra (gas and solid) as well as the Raman spectrum of the liquid have been recorded from 3200 to 100 cm−1. By analyzing six conformer pairs in xenon solutions, an enthalpy difference of 193 ± 19 cm−1 (2.31 ± 0.23 kJ/mol) was obtained with the gauche–cis rotamer (the first designation indicates the orientation of the CNCO group with respect to the three-membered ring, the second designation indicates the relative orientation of the NCO group with respect to the bridging CC bond) the more stable form and the only form present in polycrystalline solid. The abundance of the cis–trans conformer present at ambient temperature is 16 ± 1%. The potential function governing the conformational interchange has been obtained from B3LYP/6-31G(d) calculations and the two-dimensional potential has been obtained. From MP2 ab initio calculations utilizing various basis sets with diffuse functions, the gauche–cis conformer is predicted to be more stable by 223 to 269 cm−1, which is consistent with the experimental results. However, without diffuse functions the predicted conformational energy differences are much smaller (77–166 cm−1). Similar diffuse function dependency affects density functional theory calculations by the B3LYP method to a lesser extent. A complete vibrational assignment for the gauche–cis conformer is proposed and several fundamentals for the cis–trans conformer have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and r0 structural parameters are estimated. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

8.
Variable temperature (-55 to -150 degrees C) studies of the infrared spectra (3200-100 cm(-1)) of cyclopropylmethyl isothiocyanate, c-C(3)H(5)CH(2)NCS, dissolved in liquefied rare gases (Xe and Kr), have been carried out. The infrared spectra of the gas and solid, as well as the Raman spectrum of the liquid, have also been recorded from 3200 to 100 cm(-1). By analyzing six conformer pairs in xenon solutions, a standard enthalpy difference of 228 +/- 23 cm(-1) (2.73 +/- 0.27 kJ.mol(-1)) was obtained with the gauche-cis (the first designation indicates the orientation of the CNCS group with respect to the three-membered ring, the second designation indicates the relative orientation of the NCS group with respect to the bridging C-C bond) rotamer the more stable form, and it is also the only form present in polycrystalline solid. Given statistical weights of 2:1 for the gauche-cis and cis-trans forms (the only stable conformers predicted); the abundance of cis-trans conformer present at ambient temperature is 14 +/- 2%. The potential surface describing the conformational interchange has been analyzed, and the corresponding two-dimensional Fourier coefficients were obtained. From MP2 ab initio calculations utilizing various basis sets with diffuse functions, the gauche-cis conformer is predicted to be more stable by 159-302 cm(-1), which is consistent with the experimental results. However, without diffuse functions, the conformational energy differences are nearly zero even with large basis sets. For calculations with density functional theory by the B3LYP method, basis sets without diffuse functions also predict smaller energy differences between the conformers, although not nearly as small as the MP2 results. A complete vibrational assignment for the gauche-cis conformer is proposed, and several fundamentals for the cis-trans conformer have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, and infrared and Raman intensities have been predicted from ab initio calculations and compared to the experimental values when applicable; the r(0) structural parameters are also estimated. The energies for the linear CNCS moiety were calculated. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

9.
The gas phase infrared spectrum of 3-aminoacetophenone (3AAP) was measured in the range 5000-500cm(-1) and with a resolution of 0.5cm(-1). The Fourier transform Raman (FT-Raman) and Fourier transform infrared (FT-IR) spectra of 3AAP were recorded in the solid phase. Geometry optimizations were done without any constraint and several thermodynamic parameters were calculated for the minimum energy conformer at ab initio and density functional theory (DFT) levels invoking 6-311G(2df 2p) basis set and the results are compared with the experimental values. Harmonic-vibrational wavenumber was also calculated for the minimum energy conformer at ab initio and DFT levels using 6-31G(d,p) basis set and the results are compared with related molecules. With the help of specific scaling procedures, the observed vibrational wavenumbers in gas phase, FT-IR and FT-Raman spectra were analyzed and assigned to different normal modes of the molecule. Most of the modes have wavenumbers in the expected range, the error obtained was in general very low. The appropriate theoretical spectrogram for the FT-IR spectra of the title molecule is also constructed.  相似文献   

10.
The infrared spectra of meso-2,4-pentanediol and racemic-2,4-pentanediol were measured in an argon matrix at 20 K. The Raman spectra of the pure liquids (meso and racemic) were measured at room temperature. The spectra were obtained using a Fourier transform spectrophotometer and a cryostat for the low temperature matrix. The meso and racemic forms of the diol were separated by means of a spinning band distillation column. The energies of nine possible conformers of the meso form and nine conformers of the racemic form were calculated. Extensive ab initio calculations using B3LYP, MP2 and HF methods with several basis sets consistently gave the lowest energy for the TT conformer of the meso form and the GT (=TG) conformer of the racemic form. Ab initio calculations at the B3LYP/6-31G** level were performed for the lowest energy conformer of meso and racemic pentanediol to obtain the equilibrium geometry, vibrational frequencies, and infrared and Raman intensities. Calculated and experimental frequencies were compared to make vibrational assignments.  相似文献   

11.
The conformational stability, barriers to internal rotation and vibrational frequencies of trivinylborane have been determined from the vibrational spectra and ab initio calculations. The ab initio calculations have been carried out utilizing the RHF/3-21G, RHF/6-31G*, and MP2/6-31G* basis sets and support the vibrational data that there are two stable conformations in the fluid phases separated by a relatively small energy difference. One of the conformations is a near-planar form which has the three vinyl groups twisted out of the BC3 plane and belongs to the C3 point group. The other conformer has a non-planar structure and belongs to the C1 point group. These and other calculated results are compared to the corresponding quantities obtained from the experiment.  相似文献   

12.
Variable temperature (-115 to -155 degrees C) studies of the infrared spectra (3200-400 cm-1) of 4-fluoro-1-butene, CH2=CHCH2CH2F, dissolved in liquid krypton have been carried out. The infrared spectra of the gas and solid as well as the Raman spectra of the gas, liquid, and solid have also been recorded from 3200 to 100 cm-1. From these data, an enthalpy difference of 72 +/- 5 cm-1 (0.86 +/- 0.06 kJ x mol-1) has been determined between the most stable skew-gauche II conformer (the first designation refers to the position of the CH2F group relative to the double bond, and the second designation refers to the relative positions of the fluorine atom to the C-C(=C) bond) and the second most stable skew-trans form. The third most stable conformer is the skew-gauche I with an enthalpy difference of 100 +/- 7 cm-1 (1.20 +/- 0.08 kJ x mol-1) to the most stable form. Larger enthalpy values of 251 +/- 12 cm-1 (3.00 +/- 0.14 kJ x mol-1) and 268 +/- 17 cm-1 (3.21 +/- 0.20 kJ x mol-1) were obtained for the cis-trans and cis-gauche conformers, respectively. From these data and the relative statistical weights of one for the cis-trans conformer and two for all other forms, the following conformer percentages are calculated at 298 K: 36.4 +/- 0.9% skew-gauche II, 25.7 +/- 0.1% skew-trans, 22.5 +/- 0.2% skew-gauche I, 10.0 +/- 0.6% cis-gauche, and 5.4 +/- 0.2% cis-trans. The potential surface describing the conformational interchange has been analyzed and the corresponding two-dimensional Fourier coefficients were obtained. Nearly complete vibrational assignments for the three most stable conformers are proposed and some fundamentals for the cis-trans and the cis-gauche conformers have been identified. The structural parameters, dipole moments, conformational stability, vibrational frequencies, infrared, and Raman intensities have been predicted from ab initio calculations and compared to the experimental values when applicable. The adjusted r0 structural parameters have been determined by combining the ab initio predicted parameters with previously reported rotational constants from the microwave data. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

13.
The infrared (3500–30 cm−1) spectra of gaseous and solid and the Raman (3500–10 cm−1) spectra of liquid with quantitative depolarization ratios and solid 2-chloroethyl silane, ClCH2CH2SiH3, have been recorded. Similar data have been recorded for the Si–d3 isotopomer. These data indicate that two conformers, trans and gauche, are present in the fluid states but only one conformer, trans, is present in the solid. The mid-infrared spectra of the sample dissolved in liquified xenon as a function of temperature (−55 to −100°C) has been recorded. The enthalpy difference between the conformers has been determined to be 181±12 cm−1 (2.17±0.14 kJ/mol) with the trans rotamer the more stable form. From the isolated Si–H frequencies from the Si–d2 isotopomer the ro Si–H distances of 1.484 and 1.483 Å for the trans and 1.481 for the gauche conformers have been obtained. Ab initio calculations have been carried out with several different basis sets up to MP2/6-311+G** from which structural parameters and conformational stabilities have been determined. With all the basis sets the trans form is predicted to be the more stable conformer which is consistent with the experimental results. These results are compared to the corresponding quantities for the carbon analogue.  相似文献   

14.
The infrared spectra of 3-pentyn-2-ol, CH3CCCH(OH)CH3, have been recorded as a vapour and liquid at ambient temperature, as a solid at 78 K in the 4000–50 cm−1 range and isolated in an argon matrix at ca. 5 K. Infrared spectra of the solid phase at 78 K were obtained before and after annealing to temperatures of 120 and 130 K. The IR spectra of the solid were quite similar to that of the liquid.

Raman spectra of the liquid were recorded at room temperature and at various temperatures between 295 and 153 K. Spectra of an amorphous and annealed solid were recorded at 78 K. In the variable temperature Raman spectra, some bands changed in relative intensity and were interpreted in terms of conformational equilibria between the three possible conformers. Complete assignments were made for all the bands of the most stable conformer in which OH is oriented anti to C1(aMe). From various bands assigned to a second conformer in which OH is oriented anti to Hgem(aH), the conformational enthalpy differences was found to be between 0.4 and 0.8 kJ mol−1. The highest energy conformer with OH anti to C3(aC) was not detected.

Quantum-chemical calculations have been carried out at the MP2 and B3LYP levels with a variety of basis sets. Except for small basis set calculations for which the aH conformer had slightly lower energy, all the calculations revealed that aMe was the low energy conformer. The B3LYP/cc-pVTZ calculations suggested the aMe conformer as more stable by 0.8 and 8.3 kJ mol−1 relative to aH an aC, respectively. Vibrational wavenumbers and infrared and Raman band intensities for two of the three conformers are reported from B3LYP/cc-pVTZ calculations.  相似文献   


15.
Variable temperature (?55 to ?105 °C) studies of the infrared spectra (4000–400 cm?1) of chlorocyclohexane (c-C6H11Cl) dissolved in liquefied xenon have been carried out. The infrared spectra of the gas and solid have also been recorded from 4000–100 cm?1. By analyzing six conformer pairs in the xenon solution, a standard enthalpy difference of 132 ± 13 cm?1 (1.58 ± 0.16 kJ/mol) was obtained with the equatorial conformer the more stable form. At ambient temperature, the abundance of the axial conformer is 34 ± 1%. The potential surface describing the conformational interchange has been determined and the Fourier coefficients were obtained. From MP2 ab initio calculations utilizing various basis sets with and without diffuse functions, the equatorial conformer is predicted to be more stable by 161 ± 18 cm?1 from the four largest basis set calculations, which is consistent with the experimental results. However, the average from the corresponding B3LYP density functional theory calculations is 274 ± 15 cm?1 which is certainly too large. By utilizing the previously reported microwave rotational constants for two isotopomers (35Cl, 37Cl) combined with the structural parameters predicted from the MP2(full)/6-311+G(d,p) calculations, adjusted r 0 structural parameters have been obtained. The determined heavy atom distances for the most stable chair-equatorial conformer in Å are: r 0(C1–C7,8) = 1.532(3); r 0(C7,8–C13,14) = 1.536(3); r 0(C4–C13,14) = 1.524(3); and r 0(C4–Cl6) = 1.802(5) and the angles in degrees: ∠C1C7,8C13,14 = 111.3(5)º; ∠Cl6C4C13,14 = 109.7(5)º with the two dihedral angles ∠C8C1C7C13 = 56.3(10)º and ∠C14C4C13C7 = 56.7(10)º. These parameters are in good agreement with those reported earlier from microwave and electron diffraction studies where the CC and CH distances were all assumed to be equal. A few of the previously reported vibrational assignments have been corrected. The results of these spectroscopic and theoretical studies are discussed and compared to the corresponding results for some similar molecules.  相似文献   

16.
The infrared (3200-40 cm(-1)) spectra of gaseous and solid 1,1-dicyclopropylethene, (c-C3H5)2C=CH2, along with the Raman (3200-40 cm(-1)) spectra of liquid and solid phases, have been recorded. The major trans-gauche (C=C bond trans to one ring with the other ring rotated about 60 degrees from the C=C bond, trivial C(1) symmetry) and gauche-gauche (the two three-membered rings rotated oppositely about 60 degrees from the C=C bond, C2 symmetry) rotamers have been confidently identified in the fluid phases, but no definitive spectroscopic evidence was found for the gauche-gauche' form (the two three-membered rings rotated to the same side about 60 degrees from the C=C bond, Cs symmetry), which is calculated to be present in no more than 6% at ambient temperature. Variable-temperature (-55 to -100 degrees C) studies of the infrared spectra of the sample dissolved in liquid xenon have been carried out. Utilizing six different combinations of pairs of bands from the C1 and C2 conformers, the average enthalpy difference between these two has been determined to be 146 +/- 30 cm(-1) (1.75 +/- 0.36 kJ x mol(-1)), with the C1 form more stable. Given statistical weights of 2:1:1 respectively for the C1, C2, and Cs forms, it is estimated that there are 75 +/- 2% C(1) and 19 +/- 1% C2 conformers present at ambient temperature. By utilizing predicted frequencies, infrared intensities, Raman activities, and band envelopes from scaled MP2(full)/6-31G(d) ab initio calculations, a complete vibrational assignment is made for the C1 form and a number of fundamentals of the C2 conformer have been identified. The structural parameters, dipole moments, and conformational stabilities have been obtained from ab initio calculations at the level of Hartree-Fock (RHF), the perturbation method to second order with full electron correlation (MP2(full)), and hybrid density functional theory (DFT) by the B3LYP method with a variety of basis sets. The predicted conformational stabilities from the MP2 calculations with relatively large basis sets are consistent with the experimental results. Structural parameters are estimated from the MP2(full)/6-311+G(d,p) predictions which are compared to the previously reported electron diffraction parameters. These experimental and theoretical results are compared to the corresponding quantities of some similar molecules.  相似文献   

17.
The infrared spectra (4,000–30 cm?1) of the gas and solid and the Raman spectrum of liquid 2,2-difluoroethanol as well as variable temperature infrared spectra of krypton/xenon solutions have been recorded. From all these data, two (Gg and Tg) out of the five possible stable conformers have been confidently identified. The order of the stabilities has been predicted to be Gg > Tg > Gt > Gg′ > Tt by utilizing ab initio MP2 (full) and DFT (B3LYP method) calculations, where the first indicator (capital letter) is in reference to rotation around the C–C bond (G = gauche or T = trans) and the second one (small letter) refers to the orientation of the hydroxyl group. The percentage of the minor conformer Tg, at ambient temperature, is estimated to be (16 ± 3%). The optimized geometries, fundamental frequencies, infrared intensities, Raman activities, and depolarization values as well as centrifugal distortion constants have been obtained from ab initio and density functional theory calculations by utilizing a variety of basis sets as well as those with diffuse functions. By utilizing the previously reported microwave rotational constants for two isotopomers of the Gg conformer combined with ab initio MP2(full)/6-311+G(d,p) predicted structural values, adjusted r 0 parameters have been obtained. The determined heavy atom distances (Å) for the Gg conformer are: C1–C2 = 1.510(3), C2–F4 = 1.371(3), C2–F5 = 1.362(3), C1–O3 = 1.412(3) Å and angles ∠O3C1C2 = 111.0(5), ∠F4C2C1 = 108.8(5), ∠F5C2C1 = 109.8(5), τF4C2C1O3 = 63.5(5), τF5C2C1O3 = 179.1(5)°. Barriers of internal rotation have been obtained and vibrational assignments for the Gg and Tg conformers are given. The five predicted centrifugal distortion constants compared to the experimental values are in reasonable agreement except for ?K, which appears to be in error. The results are discussed and the structural parameters compared to the corresponding ones for 2-fluoroethanol and 2,2,2-trifluoroethanol where those for the latter molecule have been redetermined. The currently determined heavy atom parameters are quite different from the earlier assumed values, which led to poor values of the six adjusted parameters.  相似文献   

18.
The infrared spectra (3500–50 cm−1) of the gas and solid and the Raman spectra (3500–50 cm−1) of the liquid and solid have been recorded for 2-hexyne, CH3–CC–CH2CH2CH3. Variable temperature studies of the infrared spectrum (3500–400 cm−1) of 2-hexyne dissolved in liquid krypton have also been recorded. Utilizing four anti/gauche conformer pairs, the anti(trans) conformer is found to be the lower energy form with an enthalpy difference of 74±8 cm−1 (0.88±0.10 kJ/mol) determined from krypton solutions over the temperature range −105 to −150 °C. At room temperature it is estimated that there is 42% of the anti conformer present. Equilibrium geometries and energies of the two conformers have been determined by ab initio (HF and MP2) and hybrid DFT (B3LYP) methods using a number of basis sets. Only the HF and DFT methods predict the anti conformer as the more stable form as found experimentally. A vibrational assignment is proposed based on the force constants, relative intensities, depolarization ratios from the ab initio and DFT calculations and on rotational band contours obtained using the calculated equilibrium geometries. From calculated energies it is shown that the CH3 group exhibits almost completely free rotation which is in agreement with the observation of sub-band structure for the degenerate methyl vibrations from which values of the Coriolis coupling constants, ζ, have been determined. The results are compared to similar properties of some corresponding molecules.  相似文献   

19.
Variable temperature (-105 to -150 degrees C) studies of the infrared spectra (3500-400 cm(-1)) of ethylisothiocyanate, CH(3)CH(2)NCS, dissolved in liquid krypton have been recorded. Additionally the infrared spectra of the gas and solid have been re-investigated. These spectroscopic data indicate a single conformer in all physical states with a large number of molecules in the gas phase at ambient temperature in excited states of the CN torsional mode which has a very low barrier to conformational interchange. To aid in the analyses of the vibrational and rotational spectra, ab initio calculations have been carried out by the perturbation method to the second order (MP2) with valence and core electron correlation using a variety of basis sets up to 6-311+G(2df,2pd). With the smaller basis sets up to 6-311+G(d,p) and cc-PVDZ, the cis conformer is indicated as a transition state with all larger basis sets the cis conformer is the only stable form. The predicted energy difference from these calculations between the cis form and the higher energy trans conformer is about 125 cm(-1) which represents essentially the barrier to internal rotation of the NCS group (rotation around NC axis). Density functional theory calculation by the B3LYP method with the same basis sets predicts this barrier to be about 25 cm(-1). By utilizing the previously reported microwave rotational constants with the structural parameters predicted by the ab initio MP2(full)/6-311+G(d,p) calculations, adjusted r(0) structural parameters have been obtained for the cis form. The determined heavy atom parameters are: r(NC)=1.196(5), r(CS)=1.579(5), r(CN)=1.439(5), r(CC)=1.519(5)A for the distances and angles of angleCCN=112.1(5), angleCNC=146.2(5), angleNCS=174.0(5) degrees . The centrifugal distortion constants, dipole moments, conformational stability, vibrational frequencies, infrared intensities and Raman activities have been predicted from ab initio calculations and compared to experimental quantities when available. These results are compared to the corresponding quantities of some similar molecules.  相似文献   

20.
Infrared spectra (4000 to 400 cm(-1)) of the gas and variable temperature xenon solutions, and the Raman spectrum of the liquid have been recorded for cyclopropylisocyanate. The enthalpy difference has been determined to be 77 ± 8 cm(-1) (0.92 ± 0.10 kJ/mol) with the trans form more stable than the cis conformer with 59 ± 2% present at ambient temperature. By utilizing three rotational constants for each conformer, combined with structural parameters predicted from MP2(full)/6-311+G(d,p) calculations, the adjusted r(0) parameters have been obtained. Heavy atom structural parameters for the trans [cis] conformers are the following: distances (?) (C-C(2,3)) = 1.509(3) [1.509(3)], (C(2)-C(3)) = 1.523(3) [1.521(3)], (C-N) = 1.412(3) [1.411(3)], (N═C) =1.214(3) [1.212(3)], (C═O) = 1.163(3) [1.164(3)]; angles (°) ∠CCN = 116.7(5) [120.1(5)], ∠CNC = 136.3(5) [137.6(5)]. The centrifugal distortion constants have been predicted from ab initio and DFT calculations and are compared to the experimentally determined values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号