首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We experimentally demonstrate the coherent combining of two tunable erbium-doped fiber lasers by using a single-mode fiber feedback loop configuration. A single-mode fiber is arranged in the feedback loop to filter the far-field pattern, and the energy of desired in-phase mode is collected and injected into the resonators of two component fiber lasers. The coherently combined laser is tunable over a wide spectrum ranging from 1536 to 1569 nm, which means that the combining scheme is compatible with wavelength tuning. The effects and necessity of whether adopting polarization controlling measures or not in component lasers are investigated in detail. The results indicate that adding polarization controlling can improve the array's coherence, whereas it will decrease the output power and efficiency simultaneously.  相似文献   

2.
We demonstrate a continuous wave tunable fiber optical parametric oscillator in a Fabry–Perot cavity consisting of a 500-m highly nonlinear fiber. In this work, the pump propagates in both directions together with the signal, thus making full use of its parametric gain. The resultant laser peak power is uneven across the wavelength range of interest due to wavelength-dependent phase modulation by the single-mode fiber sections in the cavity. This can be solved by filtering the idler spectral component from the oscillating cavity.  相似文献   

3.
A novel wideband digitally tunable laser based on fiber Bragg grating external cavities and 1×N opticalswitch provides 5 ms fast tuning time with output power more than 1 dBm over whole C-band that is onlylimited by the laser emission bandwidth. Less than 50 pm wavelength drift over-10 to 55℃ temperaturerange make that the wavelength locker and monitor are not necessary in this tunable laser.  相似文献   

4.
基于多模光纤滤波器的可调谐掺铒光纤激光器   总被引:1,自引:0,他引:1  
研究了一种新型、全光纤、宽带可调谐环形腔掺铒光纤激光器。该激光器利用由单模-多模-单模光纤组成的滤波器实现波长可调谐及激光器的全光纤结构。该滤波器将多模光纤缠绕在偏振控制器上,两端分别与一段单模光纤相连,通过调整偏振控制器的状态,实现了中心波长1542~1560nm的不同激光输出。单波长连续可调谐激光器的波长可调范围为18nm,边模抑制比大于40dB,3dB线宽为0.096nm;进一步调整偏振控制器的状态和抽运功率,实验同时得到了连续可调谐的双波长、三波长等多波长激光输出。对于可调谐的多波长激光器,通过调整偏振控制器的状态,可实现波长间隔及输出中心波长两者可调。  相似文献   

5.
The resonance wavelength of the fiber Bragg gratings (FBGs) is tuned using two methods. Tunable FBGs are used as the selecting elements in the cavities of tunable lasers. An ytterbium-doped fiber laser with a wavelength tuning range of 1063–1108 nm and an output power of 6 W, a Raman fiber laser with a wavelength tuning range of 1252–1303 nm and an output power of 3 W, and an erbium-doped fiber laser with a wavelength tuning range of 1530–1580 nm are realized, and their characteristics are studied.  相似文献   

6.
We report the development of a ring tunable fiber laser based on tunable fiber Bragg gratings (TFBG) integrated with an optical circulator. The TFBG is embedded inside a 3-piont bending device for wavelength tuning. The tunable laser operating in the C-band has power variation, tuning resolution, tuning range and laser line width of ±0.5 dB, 0.5 nm, 25.0 nm and less than 0.05 nm, respectively. As 40 mW of pump power is used, the ring tunable laser has a side mode suppression ratio of 60 dB and a power conversion efficiency of 25%. These specifications ensure the high-quality operation of a tunable laser.  相似文献   

7.
A simple, continuously tunable dual-wavelength erbium-doped fiber ring laser (TDEDFL) structure for applications in high-speed communication systems is proposed and experimentally demonstrated. The dual-wavelength tuning range is 58 nm covering both the C-band and L-band from 1547 to 1605 nm. We can not only obtain a 45% improvement over previously reported tuning ranges, but also tune the wavelength of each lasing output independently. The power equalization of the dual-wavelength outputs is less than 1.5 dB. We obtain extremely stable power variation and wavelength fluctuation at room temperature. Using this fiber laser, a 10-Gb/s data transmission over a 25-km single-mode fiber (SMF) can be made available with a power penalty of 0.5 dB is demonstrated with this laser.  相似文献   

8.
We propose and demonstrate a simple configuration of wavelength-tunable fiber laser made up of a tunable band-pass filter, a Sagnac loop refiector, and a Fabry-Perot laser diode. Based on the self-seeded operation, the proposed fiber laser can obtain a single-longitudinal-mode output in the wavelength tuning range of 1544.69–1563.39 nm with tuning step of 1.34 nm. The performances of output power (-9 dBm), optical side-mode suppression ratio ( 65.5 dB), and power and wavelength stabilities are well exhibited.  相似文献   

9.
A filter based on a Mach-Zehnder interferometer (MZI) formed by cascading a pair of longperiod fiber gratings (LPFGs) written by CO2 laser in a twisted single-mode fiber is proposed. The transmission spectrum of the filter is tuned by modifying the bending curvature of the MZI, and thus wavelength tuning is achieved. And a tunable erbium-doped fiber (EDF) ring laser employing the filter as a wavelengthselection component is experimentally demonstrated. The laser can be tuned continuously from 1573.05 to 1595.75 nm with a side-mode suppression ration of ∼50 dB over the total tuning range.  相似文献   

10.
A broadband tunable, single-longitudinal-mode (SLM) Ytterbium fiber laser with unpumped Ytterbium-doped Sagnac loop is proposed and demonstrated experimentally. The unpumped Ytterbium-doped Sagnac loop is employed as a saturable absorber based auto-tracking filter to ensure single-longitudinal-mode oscillation. And a tunable band pass optical filter with large tuning range is applied to achieve broadband tuning ability. With 1-m Ytterbium-doped fiber as the gain medium, the SLM operation is achieved with over 60-nm wavelength tuning range at 160-mW pump power. The laser is very stable with output power of about 3 dBm and optical signal to noise ratio of higher than 50 dB in all the 60-nm tuning range.  相似文献   

11.
We report 20 Gb/s transmission of four-level pulse amplitude modulation(PAM) signal using a directly modulated tunable distributed Bragg reflector(DBR) laser. Transmission distance over 20 km was achieved without using optical amplifiers and optical dispersion compensation modules. A wavelength tuning range of 11.5 nm and a 3 dB bandwidth greater than 10 GHz over the entire wavelength tuning range were obtained.  相似文献   

12.
Qin G  Liao M  Suzuki T  Mori A  Ohishi Y 《Optics letters》2008,33(17):2014-2016
We report a widely tunable ring-cavity tellurite fiber Raman laser covering the S+C+L+U band. A tunable range (1495-1600 nm, limited by the tunable optical bandpass filter) over 100 nm is obtained by using a single-mode tellurite fiber with high Raman gain coefficients (55 W(-1)km(-1)) and large Raman shift (~22.3 THz) as the gain medium. Furthermore, the free-running 1665 nm Raman fiber laser is achieved from the ring cavity by removing the tunable optical bandpass filter, which shows that such a tellurite fiber has potential for constructing a widely tunable fiber Raman laser covering the S+C+L+U band. A high optical signal-to-noise ratio of over 60 dB for almost all of the tunable range is also demonstrated.  相似文献   

13.
A 40-GHz wavelength tunable mode-locked fiber ring laser based on cross-gain modulation in a semiconductor optical amplifier (SOA) is presented. Pulse trains with a pulse width of 10.5 ps at 40-GHz repetition frequency are obtained. The laser operates with almost 40-nm tuning range. The relationship between the key laser parameters and the output pulse characteristics is analyzed experimentally.  相似文献   

14.
吕志国  杨直  李峰  李强龙  王屹山  杨小君 《物理学报》2018,67(18):184205-184205
高集成、高可靠性宽调谐飞秒激光源在超快光谱学、量子光学及生物成像等研究与应用领域具有重要价值.如在生物多光子显微成像中,具有适中能量的宽调谐飞秒激光源不仅可满足多种生物组织荧光激发所需的峰值功率与激发波长,而且也可以显著提升非线性荧光产生效率、成像分辨率以及增大成像穿透深度.采用自主研发的高可靠性全保偏光纤飞秒激光器作为抽运源,基于低色散光纤中高峰值功率飞秒激光脉冲非线性传输引起的光谱加宽机制,本文开展了多波长全光纤飞秒激光产生技术研究.通过采用中心波长在980, 1000,1050, 1070与1100 nm的带通滤波片选择性地对单模光纤输出光谱中最左边与最右边光谱旁瓣进行滤波,在上述中心波长处分别可获得203, 195, 196, 187与194 fs的激光输出.本文提出的基于全光纤飞秒激光脉冲在单模光纤中非线性传输引起的光谱加宽机制与特定光谱选择技术的实验方案为高集成、高可靠性宽调谐飞秒激光源的实现提供了新的研究途径.  相似文献   

15.
Jeong YD  Won YH  Choi SO  Yoon JH 《Optics letters》2006,31(17):2586-2588
A tunable single-mode laser is obtained by using a weakly coupled cavity structure involved in a coaxially packaged Fabry-Perot laser diode. The cleaved end facet of the coupling fiber becomes an optical reflector and forms an external cavity with a laser facet. The single-mode oscillation condition is controlled and stabilized by tuning the operating temperature. The tuning range is about 10 nm with the side-mode suppression ratio of more than 27 dB when the temperature changes from 11.5 degrees C to 25 degrees C. Direct modulation characteristics were investigated, and our results show that a shorter external cavity can bear deeper modulation depth.  相似文献   

16.
A wavelength tunable erbium-doped fiber ring laser with flattened output power spectrum over a broadband is proposed and demonstrated. The power flattening is achieved using a high-birefringence fiber loop mirror, in which a number of high-birefringence fiber sections and polarization controllers are used to get a reflection spectrum that can compensate for the output power spectrum. The wavelength tuning is realized by compressing or stretching the FBGs in the laser cavity. A 1×3 switchable fiber Bragg grating array is incorporated into the fiber ring to get a wideband tuning range of 38 nm, from 1527 to 1565 nm. Within this range, the output power uniformity is controlled within ±0.8 dB. The total output power is about 4 dBm, the 3-dB linewidth is 0.01 nm, and the side mode suppression ratio is more than 48 dB.  相似文献   

17.
We experimentally demonstrated a stable, wavelength-tunable fiber laser using a polarization-maintaining, double-clad Er:Yb doped fiber amplifier in the cavity. The output wavelength is tunable over the range from 1535 to 1567 nm using a fixed grating and the dichroic mirror placed on a rotational mount; under rotation of the dichroic mirror the tuning ratio of 50 nm/deg was found. We studied the wavelength tuning range dependence on the amplifier fiber length and achieved a maximal output power of 850 mW. This configuration can be Q-switched for high peak power and its narrow bandwidth is suitable for nonlinear optics applications, such as parametric teraherthz generator.  相似文献   

18.
Wang X  Li Y  Bao X 《Optics letters》2010,35(20):3354-3356
A stable C- and L-band tunable fiber ring laser, using a two-taper Mach-Zehnder interferometer (MZI) as a filter, is proposed and demonstrated experimentally. One of the two taper waists is mechanically bent to tune the laser wavelength. Being amplified by an L-band erbium-doped fiber amplifier and an erbium-doped fiber, respectively, the fiber ring laser has a full L-band (1564-1605nm) and C-band (1550-1565nm) tuning range with a side-mode suppression ratio as high as 50dB. The laser linewidth and the minimum tuning step are related to the MZI's cavity length. It was also found that thermal annealing relieved the internal stresses of the tapers and greatly improved the laser performance.  相似文献   

19.
We experimentally demonstrate a wavelength-tunable erbium-doped fiber laser that is composed of a ring cavity and a single-mode fiber Sagnac interferometer in a new and simple arrangement. We find that the fiber laser output wavelength is tunable by adjusting the filter effect of the Sagnac fiber loop through a fiber polarization controller set there. The quasi-single-wavelength continuously tunable laser outputs could be achieved within some wavelength range. The multi-wavelength laser outputs could also be observed under some appropriate settings of the polarization controller. A theoretical demonstration of the wavelength tunability about the transmission-type Sagnac loop filter has also been achieved using the Jones calculus theory.  相似文献   

20.
Liu  X. M. 《Laser Physics》2010,20(4):842-846

Based on a piece of highly-nonlinear near-zero-dispersion-flattened photonic crystal fiber (PCF), a broadly tunable multiwavelength erbium-doped fiber laser is proposed by using a bi-directionally pumping scheme. This kind of PCF induces the modulation-instability-assisted four-wave mixing to generate new wavelengths. The proposed laser with excellent stability is tunable and switchable by adjusting the fiber Bragg gratings and the variable optical attenuators. The outstanding merits of the proposed multiwavelength laser are the flexible tuning and the ultrabroad spectral range over 150 nm. Especially, the proposed laser source can work at the wavelength of less than 1460 nm, overcoming the limit of gain bandwidth of erbium-doped fiber.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号