首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coupled conduction and natural convection transport within a discretely heated cavity have been investigated numerically. One vertical wall of the cavity is composed of discrete, isoflux heat sources mounted in a substrate of finite thermal conductivity. The opposite vertical wall and the horizontal walls are assumed to be isothermal and adiabatic, respectively. The governing steady-state partial differential equations for the fluid and solid region are solved simultaneously using a control volume formulation, coupled with an additive correction multigrid procedure that increases the convergence rate of the solution. The fluid Prandtl number and heater/fluid thermal conductivity ratio are fixed at 25 and 2350, respectively, corresponding to a dielectric fluid (FC-77) and heaters manufactured from silicon. With increasing modified Rayleigh number (104 < RaLz* < 109), the cavity flow becomes more boundary layer-like along the vertical walls, and multiple fluid cells develop in the central region. Thermal spreading in the substrate increases with decreasing modified Rayleigh number and with increasing values of the substrate/fluid thermal conductivity ratio (10−1 <- Rs ≤ 103). For large Rs, the discrete heat sources lose their thermal identity, and the streamlines and isotherms resemble those associated with a differentially heated cavity. Thermal spreading in the substrate also has a significant effect on circulation in the cavity and on maximum surface temperatures.  相似文献   

2.
An experimental study was made on convective heat and mass transfer from a horizontal heated cylinder in a downward flow of air-water mist at a blockage ratio of 0.4. The measured local heat transfer coefficients agree fairly well with the authors' numerical solutions obtained previously for the front surface of a cylinder over the ranges mass flow ratio 0–4.5×10−2, a temperature difference between the cylinder and air 10–43 K, gas Reynolds number (7.9–23)×103, Rosin-Rammler size parameter 105–168 μm, and dispersion parameter 3.4–3.7. Heat transfer augmentation, two-pahse to single-phase of greater than 19 was attained at the forward stagnation point. For heat transfer in the rear part of the cylinder, an empirical formula is derived by taking into account the dimensionless governing variables, that is, coolant-feed and evaporation parameters.  相似文献   

3.
The heat and mass transfer of two immiscible fluids in an inclined channel with thermal diffusion, vicious, and Darcy dissipation is studied. The first region consists of a clear fluid, and the second one is filled with a nanofluid saturated with a porous medium. The behaviors of Cu-H2O, In-H2O, and Au-H2O nanofluids are analyzed. The transport properties are assumed to be constant. The coupled non-linear equations of the flow model are transformed into the dimensionless form, and the solutions for the velocity, temperature, and concentration are obtained by the regular perturbation technique. Investigations are carried out on the flow characteristics for various values of the material parameters. The results show that the velocity and temperature of the fluids enhance with the thermal Grashof number, solutal Grashof number, and Brinkman number while decrease with the porosity parameter and solid volume fraction.  相似文献   

4.
An unsteady radial problem of evaporation and heat transfer from a spherical surface is considered for a model kinetic equation. The problem is solved numerically using a second-order implicit conservative method.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 181–192. Original Russian Text Copyright © 2005 by Titarev and Shakhov.  相似文献   

5.
In this article, we investigate the influence of heat and mass transfer on the peristaltic flow of magnetohydrodynamic second‐order fluid in a channel when the induced magnetic field effects are present. Problem formulation in a wave frame of reference is presented. The governing nonlinear analysis is carried out under the assumption of small wave number. Explicit expressions of the pressure gradient, the stream function, the magnetic force function, the axial induced magnetic field, the current density distribution, the temperature, and the concentration distribution are derived. The effects of embedded parameters are also examined. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The theory describing the onset of convection in a homogeneous porous layer bounded above and below by isothermal surfaces is extended to consider an upper boundary which is partly permeable. The general boundary condition p + λ ∂p/∂n = constant is applied at the top surface and the flow is investigated for various λ in the range 0 ⩽ λ < ∞. Estimates of the magnitude and horizontal distribution of the vertical mass and heat fluxes at the surface, the horizontally-averaged heat flux (Nusselt number) and the fraction of the fluid which recirculates within the layer are found for slightly supercritical conditions. Comparisons are made with the two limiting cases λ → ∞, where the surface is completely impermeable, and λ = 0, where the surface is at constant pressure. Also studied are the effects of anisotropy in permeability, ξ = K H /K V , and anisotropy is thermal conductivity, η = k H /k V , both parameters being ratios of horizontal to vertical quantities. Quantitative results are given for a wide variety of the parameters λ, ξ and η. In the limit ξ/η → 0 there is no recirculation, all fluid being converted out of the top surface, while in the limit ξ/η → ∞ there is full recirculation.  相似文献   

7.
基于动态三轴被动加载实验技术,建立了一种可测量吉帕量级及以下低体模量材料压强-体应变关系的被动围压SHPB实验设计方法。在该实验设计中确定了样品、封装垫块、围压套管的尺寸以及尺寸间的匹配,并对实验压强进行了限制。通过比较传统SHPB实验和被动围压SHPB实验测量LC4铝合金等效应力的方式,验证了被动围压SHPB实验压强测量的有效性;通过实验和数值模拟分析,验证了体应变测量的有效性。将设计的被动围压SHPB实验方法应用于铈,得到了铈在伽马→阿尔法相变区间完整显示的压强-体应变演化信息,且相变起始和终止压强、相变体积变化量均与静高压实验结果基本一致。这说明设计的被动围压SHPB实验方法适用于测量低体模量材料的压强-体应变关系。  相似文献   

8.
The combined influence of heat and mass transfer has been explored in a study of peristaltic transport of magnetohydrodynamic Williamson fluid in a non‐uniform channel with flexible walls. The slip conditions are paid due attention and long wavelength and small Reynolds number assumptions are adopted in the problem formulation. The obtained results are valid for small Weissenberg number. A detailed study of involved key parameters in the obtained solutions is made by the sketched graphs. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
The quasi-adiabatic regime of free oscillation of a bubble in the presence of irreversible interphase heat transfer between the bubble and the ambient liquid is studied. On the basis of simplified model equations of a rarefield bubble mixture, a nonlinear-oscillation equation of the relaxation type is obtained. In constructing an exact particular solution of this equation, the heat transfer law associated with bubble compression is established. For studying the harmonic oscillations, the Krylov-Bogolyubov-Mitropol’skii asymptotic method is used. It is shown that, for a small bubble, the viscosity and heat transfer effects are of the same order. For a small bubble, the influence of these effects on the formation of the natural-oscillation frequency, which is small in the linear approximation, may be significant in the nonlinear formulation. For a large bubble, the influence of these effects is negligible in both approximations. For the approximate solution of the nonlinear equation, a uniformly valid second-order expansion is constructed.  相似文献   

10.
Results of an experimental study of watervapor absorption by a stagnant layer of the aqueous solution of LiBr with admixed octanol, used as a surfactant, are described. Time dependences of temperature at various heights of the layer, time dependences of absorbed mass, and temperature and concentration profiles at various times are reported. A comparison with experimental data for surfactantfree solutions reveals an enhanced action of octanol on watervapor absorption and an increase in the absorbent surface temperature at the initial stage of the process.  相似文献   

11.
A boundary layer analysis was carried out to investigate the coupled phenomena of heat and mass transfer by natural convection from concentrated heat and mass sources embedded in saturated porous media. Both line and point source problems were treated. The boundary layer equations based on Darcy's law and Boussinesq approximation were solved by means of similarity transformation to obtain the details of velocity, temperature and concentration distributions above a concentrated heat source. Two important parameters, namely the Lewis number Le and the buoyancy ratioN were identified to conduct a series of numerical integrations. For the case of small Le, a substance diffuses further away from the plume centerline, such that the mass transfer influences both velocity and temperature profiles over a wide range. For large Le, on the other hand, the substance diffuses within a narrow range along the centerline. Naturally, the influence of mass transfer is limited to the level of the centerline velocity, so that a peaky velocity profile appears for positiveN whereas a velocity defect emerges along the centerline for negativeN. For such cases of large Le, the temperature profiles are found to be fairly insensitive to Le.  相似文献   

12.
Experimental results are presented for characteristics of impingement heat transfer caused by three slot jets. Experimental values were obtained for the dimensionless distance H = 0.5−3, dimensionless pitch P = 6−16, and Reynolds number Re = 500−8000. For laminar impinging flow, they were compared with numerical results. For turbulent impinging flow, two peaks of the local Nusselt number were obtained behind the second nozzle. The position of the second peak approached the nozzle as the space between nozzle and impinged surface decreased. The average Nusselt number between the central and second nozzles was determined from the ratio P/H and the Reynolds number based on the pitch of the nozzles.  相似文献   

13.
A model problem of the motion of water and air in thawing snow is examined using the Masket-Leverett equations of two-phase filtration. The theorem of existence of a self-similar solution is proved. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 4, pp. 13–23, July–August, 2008.  相似文献   

14.
All volcanic eruptions are accompanied by the degasification of the magma, which results in the growth of gas bubbles in the silicate melt. The number and growth rate of the bubbles determine the character of the eruption. When the free-gas concentration is low, the eruption is weak and takes a short time. At high concentrations, the melt is fragmented and a gas-particle mixture is formed. This results in the catastrophic intensification of the eruption. In this study, for describing the magma flow in a volcano conduit with account for the mass transfer between the bubbles and the melt, we construct models in which the conduit magma flow is considered simultaneously with the dynamics of gas-bubble growth in the melt. The models describe the magma eruptions with equilibrium or weak growth of the bubbles and also with a moderate rate of bubble growth, which is more typical of volcanic systems. Using the models constructed, an intense steady-state eruption and the problem of the evolution of the eruption to the steady-state regime after the rupture of a plug near the top of the conduit are considered. The effect of gas diffusion on the intensity and duration of the eruption is indicated.  相似文献   

15.
A study of internal heat transfer in nonuniform porous structures   总被引:4,自引:0,他引:4  
The results of theoretical and experimental studies of heat transfer and pressure drop in nonuniform porous materials and systems are presented. In experiments, measurements were made of the air flow rate, inlet and outlet air pressures, and air and porous sample temperatures. Experimental determination of the heat transfer coefficient in porous structures is associated with certain difficulties. The problem of determining a temperature difference between coolant and porous skeleton is the most complex. As a rule, under laboratory conditions this difference is small and cannot be found with sufficient accuracy. In the present work, the method of determination of the internal heat transfer coefficient is based on solving the inverse unsteady heat transfer problem for porous structures. Using this approach, the heat transfer coefficient is calculated indirectly or on the basis of the porous material temperature variation over time.  相似文献   

16.
A three-dimensional numerical investigation of steady laminar natural convection in vented enclosures is carried out. A discrete flush-type heat source mounted on the substrate is used to simulate an electronic component. Four different vent locations are investigated. Combined natural convection in the air and conduction in the heat source, the substrate, and the enclosure walls are solved. Solutions are obtained for Rayleigh numbers ranging from 104 to 106, different substrate thermal conductivity ratios, and varied vent sizes. The calculation domain is extended beyond the cubic enclosure in x-, y-, and z-directions. Appropriate boundary conditions are prescribed on the extended computational domain. The resulting flow and temperature patterns are discussed. Also, the local and overall heat transfer from the heat source and the substrate, in terms of Nusselt numbers and the surface temperatures, are presented to illustrate the vent effects.  相似文献   

17.
We describe massively parallel finite element compulations of fluid dynamics for several crystal growth systems. Examples are presented of how large-scale numerical simulations have been used to gain insights to the workings of several processes, specifically the melt growth of oxide crystals by the Czochralski process and the solution growth of nonlinear optical crystals. These systems are characterized by nonlinear interactions between field and interfacial phenomena-the transport of momentum, heat, and mass coupled with solidification kinetics. Modern finite element methods show great potential to provide the understanding needed to optimize these processes.  相似文献   

18.
In this paper, we reconsider the problem of fully developed natural convection heat and mass transfer of a micropolar fluid in a vertical channel with asymmetric wall temperatures and concentrations. The resulting boundary‐value problem is solved analytically by the homotopy analysis method. The accuracy of the present solution is found to be in excellent agreement with the solutions of Cheng (Int. Commun. Heat Mass Transfer 2006; 33 :627–635). Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
A detailed theory describing the simultaneous transfer of heat, water, and solute in unsaturated porous mediais developed. The theory includes three fully-coupledpartial differential equations. Heat, water, andsolute move in the presence of temperature, T; matricpressure head, m ; solution osmotic pressure head o ; and solute concentration C gradients. Thetheory can be applied to describe the mass and energyin radioactive waste repositories, food processing,underground energy storage sites, buried electriccables positions, waste disposal sites, and inagricultural soil. Several transport coefficients forheat, water, and solute are included in the theory. The coefficients are evaluated for a silty clay loamsoil to clarify their dependence on water content (),T, and C. The thermal vapor diffusivity D Tv first increased as increased to0.22 m3/m3 then decreased with furtherincreases in . D Tv was 3 orders of magnitudegreater than either isothermal vapor D mv orosmotic vapor D ov , diffusivities at of0.20~m3/m3, T of 50°C, and C of 0.001mol/kg. All of the liquid and vapor water transport coefficients increased with increasing T. D Tv decreased with increasing C to a greater extent thanD mv and D ov . The effective thermalconductivity decreased slightly with increasing C. Thesolute diffusion coefficient D d was 6 to 7orders of magnitude greater than the thermal soluteand salt sieving diffusion coefficients at of0.20~m3/m3, T of 50°C, and C of 0.001 mol/kg.  相似文献   

20.
The stability of convective motion, generated by a lateral temperature difference across a vertical slot, is studied numerically over a range ofGr=5000 to 1.5 × 105,Pr=0.01 to 10, andA=8,16 and 20. Various cellular flow structures and temperature patterns are illustrated. Several branches of solutions characterized by different numbers of the cells in the flow patterns as well as by both steady and unsteady multicellular patterns are found for low-Prandtl-number fluid in the vertical slot. Meanwhile, the behaviors of the temperature variation and heat transfer are also discussed. The project supported by the National Natural Science Foundation of China (59776011) and by the Returnee from Abroad Funding of Academia Sinica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号