首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present work, dispersive liquid-liquid microextraction based on solidification of floating organic drop was developed as a simple and rapid technique for separation of silver ions from aqueous samples. In this technique, 700 μL 0.02% of 5-(4'-dimethylamino benzyliden)-rhodanine (chelating agent) was added into the 10 mL analyte sample in a test tube and 30.0 μL 1-undecanol (extraction solvent) was injected shortly thereafter. The test tubes were sonicated, centrifuged and then some effective parameters on extraction and complex formation, such as type and volume of extraction and disperser solvent, pH, the amount of chelating agent and extraction time were optimized. The effect of the interfering ions on the analytes recovery was also investigated. The calibration graph was linear in the range of 0.10-10.0 ng mL(-1) with detection limit of 0.056 ng mL(-1) (n=8). The relative standard deviation (RSD) was ±4.3% (n=8, C=5.0 ng mL(-1)) and the enrichment factor was 250.0. The proposed method was applied for extraction and determination of silver in different water samples.  相似文献   

2.
Chung LW  Lee MR 《Talanta》2008,76(1):154-160
Determination of trace chlorophenols (CPs) in environmental samples has been evaluated using liquid-phase microextraction (LPME) coupled with gas chromatography-mass spectrometry (GC-MS) without derivatization. The LPME procedure used to extract CPs from water involved 15 microL 1-octanol as acceptor solution in a 5.0 cm polypropylene hollow fiber with an inner diameter of 600 microm and a pore size of 0.2 microm. Under the optimal extraction conditions, enrichment factors from 117 to 220 are obtained. The obtained linear range is 1-100 ng mL(-1) with r(2)=0.9967 for 2,4-dichlorophenol (2,4-DCP); 1-100 ng mL(-1) with r(2)=0.9905 for 2,4,6-trichlorophenol (2,4,6-TCP); 5-500 ng mL(-1) with r(2)=0.9983 for 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP), and 10-1000 ng mL(-1) with r(2)=0.9929 for pentachlorophenol (PCP). The limits of detection range from 0.08 to 2 ng mL(-1), which is comparable with the reported values (12-120 ng mL(-1)). Recoveries of CPs in various matrices exceed 85% with relative standard deviations of less than 10%, except for PCP in landfill leachate. The applicability of this method was examined to determine CPs in environmental samples by analyzing landfill leachate, ground water and soil. The 2,4-DCP and 2,4,6-TCP detected in the landfill leachate are 6.68 and 2.47 ng mL(-1). The 2,4,6-TCP detected in ground water is 2.08 ng mL(-1). All the studied CPs are detected in contaminated soil. The proposed method is simple, low-cost, less organic solvent used and can potentially be applied to analyze CPs in complex environmental matrices.  相似文献   

3.
A method for the determination of trace amounts of the herbicide oxadiazon was developed using headspace solid-phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS) and selected ion monitoring. It was applied to determine oxadiazon in ground water, agricultural soil, must, wine and human urine samples. To determine oxadiazon in liquid samples, a response surface methodology generated with a Doehlert design was applied to optimize the HS-SPME conditions using a 100 microm polydimethylsiloxane fibre. For the analysis of soil samples, they were mixed with water and the SPME fibre suspended in the headspace above the slurry. Ground water, human urine and must show linear concentration range of application of 0.5-50 ng ml(-1)' with detection limits < or =0.02 ng ml(-1). HS-SPME-GC-MS analysis yielded good reproducibility (RSD values between 6.5 and 13.5%). The method validation was completed with spiked matrix samples. The developed analytical procedure is solvent free, cost effective and fast.  相似文献   

4.
This study proposes the use of deuterated phthalates as internal standards for the accurate determination of phthalates in wine by headspace solid-phase microextraction followed by gas chromatography-mass spectrometry. Unlike other internal standards proposed previously such as benzyl benzoate, deuterated phthalates enabled matrix-error free determinations to be performed without standard addition because statistically equal slopes were obtained for synthetic, white, rose and red wines. The relative standard deviation values under intermediate precision conditions ranged from 0.24 to 4.6%, and detection limits below 35 ng L(-1) were obtained. Recovery values were around 100% in most of cases and the method provided similar results to standard addition. Finally, the method was used to screen phthalate levels in 10 wine samples.  相似文献   

5.
制备了一种新型的聚苯乙烯纳米纤维, 将其作为固相萃取吸附剂装填制成固相萃取柱, 与高效液相色谱联用建立了干辣椒、 水果饮料及红酒中罗丹明B的定量分析方法. 高效液相色谱以3 g/L磷酸缓冲液-甲醇混合溶液(体积比3∶7, pH=7.0)为流动相. 通过对提取条件的优化, 得到该方法对干辣椒中罗丹明B的检出限为0.1 ng/g, 最低定量限为0.6 ng/g; 对水果饮料和红酒中罗丹明B的检出限均为0.2 ng/mL, 最低定量限均为0.5 ng/mL. 此方法对干辣椒中罗丹明B的提取回收率为98.2%~110.3%; 对水果饮料中罗丹明B的提取回收率为94.6%~102.2%; 对红酒中罗丹明B的提取回收率为90.4%~104.6%. 该方法的线性范围为1~100 ng/mL(ng/g), 相对标准偏差为2.3%~9.0%. 该方法灵敏度高、 选择性好, 可用于干辣椒、 水果饮料及红酒中罗丹明B的定量分析.  相似文献   

6.
Dan Luo  Fei Chen  Yu-Qi Feng 《Talanta》2009,77(5):1701-3016
A method was developed for the determination of Δ9-Tetrahydrocannabinol (THC) in saliva by polymer monolith microextraction (PMME) combined with gas chromatography-mass spectrometry. The poly(methacrylic acid-co-ethylene glycol dimethacrylate) (p(MAA-co-EGDMA)) monolithic capillary column was selected as the extraction medium of PMME, which showed high extraction capacity towards THC in saliva. To reach optimum PMME extraction performance, several PMME parameters were investigated, including matrix pH, flow rate for extraction, sampling volume and elution solvent. Under the optimal conditions, good extraction efficiency was obtained with no matrix interference in the process of extraction and the subsequent GC-MS analysis. In the selected-ion monitoring (SIM) mode, the limit of detection (LOD) for THC was 0.68 ng/mL. The linearity range of the method was 3-300 ng/mL. Excellent reproducibility of the method was exhibited by intra- and inter-day precisions, yielding the relative standard deviations (R.S.D.s) less than 12%; recoveries higher than 89%. The proposed method was proved to be rapid, sensitive, and competently applied to the determination of THC in saliva samples.  相似文献   

7.
An analytical method devoted to organotin compounds (OTC) determination in brandy and wine was developed. It is based on solid-phase microextraction (SPME) of ethylated organotins. The following operating factors were examined: SPME mode/nature of fibre coating, sample volume/dilution, and sampling time. The optimisation work led to dilute the sample in an aqueous buffer (1/11, v/v ratio) in order to satisfactorily decrease the matrix effects due to competitive sorption of non-OTC species onto/into fibre coating. The optimised operating conditions consist of polydimethylsiloxane (PDMS) coated fibre used in headspace mode for 30 min. In wines, the limits of detection (LOD) and quantification (LOQ) ranged from 1 to 40 and 3 to 80 ng(Sn)L(-1) respectively, according to the species. The analytical validation was made by evaluating the accuracy of OTC determination in spiked samples with various concentrations over the whole calibration range, i.e. from LOQ to 1000 ng(Sn)L(-1). Recovery was around 80-110% and precision (relative standard deviation, RSD) was between 12% and 25%. Despite the presence of two chromatographic peaks corresponding to sulphur compounds during brandy analysis, the selectivity of the method is adequate. The analysis confirmed the analytical performances and applicability of the method to wine and brandy samples. The obtained results emphasise the contamination of brandy and wine by organotins, the storage in plastic container seeming to be confirmed as the main OTC source.  相似文献   

8.
Zhang M  Huang J  Wei C  Yu B  Yang X  Chen X 《Talanta》2008,74(4):599-604
A new approach for the extraction of nine kinds of organochlorine pesticides (OCPs) from vegetable samples coupling single-drop microextraction with gas chromatography-mass spectrometry was presented. Experimental parameters, such as organic solvent, exposure time, agitation and organic drop volume were controlled and optimized. An effective extraction was achieved by suspending a 1.00microL mixed drop of p-xylene and acetone (8:2, v/v) to the tip of a microsyringe immersed in a 2mL donor aqueous solution and stirred at 400rpm. The approach was applied to the determination of OCPs in vegetable samples with a linearity range of 0.05-20ng mL(-1) for alpha-, beta-, gamma-, delta-hexachlorobenzene (BHC) and dicofol, 0.5-20ng mL(-1) for dieldrin and 2,2-bis(4-chlorophenyl)-1,1-dichloroethane (DDD) or 0.5-50ng mL(-1) for 2,2-bis(4-chlorophenyl)-1,1-dichloroethylene (DDE) and 2-(2-chlorophenyl)-2 (4-chlorophenyl)-1,1,1-trichloroethane (p,p'-DDT). Correspondingly, the determination limit at an S/N of 3 ranged from 0.05ng mL(-1) for alpha-, beta-, gamma-, delta-BHC to 0.2ng mL(-1) for dicofol, dieldrin or p,p'-DDT. The relative recoveries were from 63.3 to 100%, with repeatability ranging from 8.74 to 18.9% (relative standard deviation, R.S.D.). The single-drop microextraction was proved to be a fast and simple approach for the pre-concentration of organochlorine pesticides in vegetable samples.  相似文献   

9.
A novel method based on simultaneous liquid-liquid microextraction and carbon nanotube reinforced hollow fiber microporous membrane solid-liquid phase microextraction has been developed for the determination of six organophosphorus pesticides, i.e. isocarbophos, phosmet, parathion-methyl, triazophos, fonofos and phoxim, in water and watermelon samples prior to high-performance liquid chromatography (HPLC). Under the optimum conditions, the method shows a good linearity within a range of 1-200 ng/mL for water samples and 5-200 ng/g for watermelon samples, with the correlation coefficients (r) varying from 0.9990 to 0.9997 and 0.9986 to 0.9995, respectively. The limits of detection (LODs) were in the range between 0.1 and 0.3 ng/mL for water samples and between 1.0 and 1.5 ng/g for watermelon samples. The recoveries of the method at spiking levels of 5.0 and 50.0 ng/mL for water samples were between 85.4 and 100.8%, and at spiking levels of 5.0 and 50.0 ng/g for watermelon samples, they were between 82.6 and 92.4%, with the relative standard deviations (RSDs) varying from 4.5-6.9% and 5.2-7.4%, respectively. The results suggested that the developed method represents a simple, low-cost, high analytes preconcentration and excellent sample cleanup procedure for the determination of organophosphorus pesticides in water and watermelon samples.  相似文献   

10.
A simple and sensitive method for the determination of isophorone in food samples was developed by headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Isophorone was separated within 10 min by GC-MS using a DB-1 capillary column and detected with selective ion monitoring mode. The HS-SPME using a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber provided effective sample enrichment, and was carried out by fiber exposition at 60 degrees C for 45 min. The extracted isophorone was easily desorbed by fiber exposition in the injection port of a capillary GC-MS system, and carryover was not observed. Using this method, the calibration curve of isophorone was linear in the range 20-1000 pg/mL, with a correlation coefficient 0.9996 (n = 18), and the detection limit (S/N = 3) was 0.5 pg/mL. The HS-SPME/GC-MS method showed 25,000-fold higher sensitivity than the direct injection method (1 microL injection). The within-day and between-day precisions (relative standard deviations) at the concentration of 1 ng/mL isophorone were 3.9% and 6.1% (n=5), respectively. This method was successfully applied to the analysis of food samples without interference peaks. The recoveries of isophorone spiked into food sample were above 84% for a 50 or 500 pg/mL spiking concentration. The analytical results of the contents of isophorone in various food samples were presented.  相似文献   

11.
A simplified sample preparation method, based on the matrix solid-phase dispersion technique, is proposed for the sensitive determination of 15 organic fungicides in vineyard soils by gas chromatography-mass spectrometry (GC-MS). Under final working conditions, sieved samples (0.5 g) were blended and dispersed with 2 g of C18 and transferred to a polypropylene syringe containing 1 g of diatomaceous earth. Analytes were recovered using 10 mL of ethyl acetate, this extract was concentrated to 1 mL and fungicides determined by GC-MS, without additional cleanup. The method provided recoveries in the range from 74 to 122% for soils with total carbon contents up to 5.5% and it allowed the use of external standard as quantification technique. Inter-day precision, given as relative standard deviations, stayed between 3 and 13%, and the limits of quantification were comprised between 0.6 and 15 ng g(-1). Several fungicides were found in the top layer of vineyard soils with the highest detection frequency and maximum concentration corresponding to iprovalicarb. Some real samples were also submitted to pressurized liquid extraction. Measured concentrations were in excellent agreement with those obtained by matrix solid-phase dispersion, which reinforces the accuracy of the latter methodology.  相似文献   

12.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-mass spectrometry (GC-MS) was evaluated for the simultaneous determination of five chlorophenols and seven haloanisoles in wines and cork stoppers. Parameters, such as the nature and volume of the extracting and disperser solvents, extraction time, salt addition, centrifugation time and sample volume or mass, affecting the DLLME were carefully optimized to extract and preconcentrate chlorophenols, in the form of their acetylated derivatives, and haloanisoles. In this extraction method, 1mL of acetone (disperser solvent) containing 30μL of carbon tetrachloride (extraction solvent) was rapidly injected by a syringe into 5mL of sample solution containing 200μL of acetic anhydride (derivatizing reagent) and 0.5mL of phosphate buffer solution, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation, and a volume of 4μL of the sedimented phase was analyzed by GC-MS. The wine samples were directly used for the DLLME extraction (red wines required a 1:1 dilution with water). For cork samples, the target analytes were first extracted with pentane, the solvent was evaporated and the residue reconstituted with acetone before DLLME. The use of an internal standard (2,4-dibromoanisole) notably improved the repeatability of the procedure. Under the optimized conditions, detection limits ranged from 0.004 to 0.108ngmL(-1) in wine samples (24-220pgg(-1) in corks), depending on the compound and the sample analyzed. The enrichment factors for haloanisoles were in the 380-700-fold range.  相似文献   

13.
A solid phase microextraction (HS-SPME)-GC-MS methodology was established for the analysis of 3-alkyl-2-methoxypyrazines (MPs) in wine using a stable isotope dilution assay. The compounds analysed were 3-isobutyl-2-methoxypyrazine (IBMP), 3-sec-butyl-2-methoxypyrazine (SBMP), and 3-isopropyl-2-methoxypyrazine (IPMP) using their respective deuterated analogues ([2H3]-IBMP, [2H3]-SBMP, [2H3]-IPMP) as internal standards, synthesised during this work. A divinylbenzene/carboxene/polydimethylsiloxane (DVB/CAR/PDMS) fibre was selected for isolation of MPs and the effects of matrix parameters such as pH and ethanol concentration were examined in the development of the method. Best results were obtained at a pH of approximately 6 and with a wine dilution factor of 1:2.5, resulting in an ethanol concentration of approximately 5% (v/v). Relative standard deviations (RSDs) of replicate samples were 5.6-7% for all MPs at 5 ng L(-1) and <5% for 15 and 30 ng L(-1) samples. The limit of detection was <0.5 ng L(-1) in juice and 1-2 ng L(-1) in wine. The recovery efficiencies for spiked wine samples were between 99 and 102% for all three MPs. Using this method, we investigated the impact of the Multicoloured Asian Lady Beetle (MALB) on MPs in wine. In red wine fermented with live MALB, IPMP is the most prevalent MP detected, although SBMP concentrations are also increased and IBMP is unchanged from background levels. MALB that have been dead for 1 day before addition to juice can still contribute to elevated SBMP concentrations in wine, but not if they have been dead for 3 days or longer. Clarifying juice prior to fermentation leads to substantially lower IPMP concentration in the subsequent wine when compared with unclarified juice.  相似文献   

14.
Solid-phase microextraction (SPME), using a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber, interfaced with liquid chromatography-fluorescence detection (LC-FD) has been applied to the determination of Ochratoxin A (OTA) in wine samples. Compared to the most widely adopted extraction/clean-up procedure based on immunoaffinity columns (IAC), the solventless extraction is simpler and cost-effective, requiring the simple immersion of the fiber in diluted wine samples. Furthermore, a fast LC separation is achieved under isocratic conditions. The linear range investigated in wine was 0.25-8 ng/mL; at fortification levels of 0.5 and 2 ng/mL, within-day intra-laboratory precision (repeatability) values, expressed as RSD%, were 5.9 and 5.1, respectively, whereas between days (n = 4) precision was 8.5 and 7.1%, respectively. The limit of detection (LOD) at a signal-to-noise (S/N) ratio of 3 was 0.07 ng/mL; the limit of quantification (LOQ) calculated at S/N = 10 was 0.22 ng/mL, well below the European regulatory level of 2 ng/mL. The potential of the method has been demonstrated by the analysis of a number of different wine samples.  相似文献   

15.
An original analytical method has been developed for the determination of the antioxidants trans-resveratrol (t-RSV) and cis-resveratrol (c-RSV) and of melatonin (MLT) in red and white wine. The method is based on HPLC coupled to fluorescence detection. Separation was obtained by using a RP column (C8, 150 mm x 4.6 mm id, 5 mum) and a mobile phase composed of 79% aqueous phosphate buffer at pH 3.0 and 21% ACN. Fluorescence intensity was monitored at lambda = 386 nm while exciting at lambda = 298 nm, mirtazapine was used as the internal standard. A careful pretreatment of wine samples was developed, using SPE with C18 cartridges (100 mg, 1 mL). The calibration curves were linear over the following concentration ranges: 0.03-5.00 ng/mL for MLT, 3-500 ng/mL for t-RSV and 1-150 ng/mL for c-RSV. The LOD values were 0.01 ng/mL for MLT, 1 ng/mL for t-RSV and 0.3 ng/mL for c-RSV. Precision data, as well as extraction yield and sample purification results, were satisfactory. Thus, the method seems to be suitable for the analysis of MLT and resveratrol isomers in wine samples. Moreover, wine total polyphenol content and antioxidant activity were evaluated.  相似文献   

16.
Koster EH  Bruins CH  de Jong GJ 《The Analyst》2002,127(5):598-602
On-fiber derivatization was used for solid-phase microextraction (SPME) in order to increase the detectability and extractability of drugs in biological samples. Amphetamine, which was used as a model compound, was derivatized with pentafluorobenzoyl chloride (PFBCl) and subjected to gas chromatography with electron capture or mass spectrometric detection. Extraction was performed by direct immersion of a 100 microm polydimethylsiloxane-coated fiber into buffered human urine. On-fiber derivatization was performed either after or simultaneously with extraction. The former procedure gave cleaner chromatograms but the latter turned out to be superior with respect to linearity and repeatability. For the on-fiber derivatization of amphetamine an excess of reagent is required. Because a considerable part of the PFBCl loaded on to the fiber is used up by reaction with matrix compounds and water, a reagent loading time of 5 min was needed to obtain a linear range (r = 0.9756) from 250 pg mL(-1) to 15 ng mL(-1). Due to an interfering matrix compound, the limit of detection was also found to be dependent on the reagent loading time, i.e., the limit of detection for a PFBCl loading time of 5 min is 250 pg mL(-1) whereas that for a 1 min loading time it is 100 pg mL(-1). The relative standard deviation (n = 7) of the method was about 11% at an amphetamine concentration of 1 ng mL(-1). The applicability of the method for the determination of drugs in biological samples is shown.  相似文献   

17.
A novel procedure of sample preparation combined with high‐performance liquid chromatography with diode array detection is introduced for the analysis of highly chlorinated phenols (trichlorophenols, tetrachlorophenols, and pentachlorophenol) in wine. The main features of the proposed method are (i) low‐toxicity diethyl carbonate as extraction solvent to selectively extract the analytes without matrix effect, (ii) the combination of salting‐out assisted liquid–liquid extraction and dispersive liquid–liquid microextraction to achieve an enrichment factor of 334–361, and (iii) the extract is analyzed by high‐performance liquid chromatography to avoid derivatization. Under the optimum conditions, correlation coefficients (r) were >0.997 for calibration curves in the range 1–80 ng/mL, detection limits and quantification limits ranged from 0.19 to 0.67 and 0.63 to 2.23 ng/mL, respectively, and relative standard deviation was <8%. The method was applied for the determination of chlorophenols in real wines, with recovery rates in the range 82–104%.  相似文献   

18.
A method for the simultaneous identification and quantification of amphetamine (AMP), methamphetamine (MET), fenproporex (FEN), diethylpropion (DIE) and methylphenidate (MPH) in oral fluid collected with Quantisal? device has been developed and validated. Thereunto, in-matrix propylchloroformate derivatization followed by direct immersion solid-phase microextraction and gas chromatography-mass spectrometry were employed. Deuterium labeled AMP was used as internal standard for all the stimulants and analysis was performed using the selected ion monitoring mode. The detector response was linear for the studied drugs in the concentration range of 2-256 ng mL(-1) (neat oral fluid), except for FEN, whereas the linear range was 4-256 ng mL(-1). The detection limits were 0.5 ng mL(-1) (MET), 1 ng mL(-1) (MPH) and 2 ng mL(-1) (DIE, AMP, FEN), respectively. Accuracy of quality control samples remained within 98.2-111.9% of the target concentrations, while precision has not exceeded 15% of the relative standard deviation. Recoveries with Quantisal? device ranged from 77.2% to 112.1%. Also, the goodness-of-fit concerning the ordinary least squares model in the statistical inference of data has been tested through residual plotting and ANOVA. The validated method can be easily automated and then used for screening and confirmation of amphetamine-type stimulants in drivers' oral fluid.  相似文献   

19.
The Aromatic Sulfur Compounds (ASCs) are considered as "markers" of the crude oil age. In this frame, we have considered ASCs as "markers" of remote crude oil sea water pollution for their chemical characteristics, good solubility in water and resistance to the biodegradation. Gas chromatography of ASCs in distilled water and sea water samples has been performed after adsorption from a 80 mL water sample on to a cartridge containing 100 mg NH2-bonded porous silica. The ASCs are desorbed with 2 mL acetone-trichloromethane (1:1), which is concentrated and analysed by GC-FID or GC-MS in SIM mode. The average recovery of 0.1 microg mL(-1) of each ASC from distilled water and 0.04-0.2 microg mL(-1) from sea water samples is > or = 96.3% with a standard deviation < or = 2.2. The limits of detection are 0.06-0.05 ng mL(-1) for thiophen-2-carboxaldehyde and benzothiophene, and 0.006-0.004 ng mL(-1) for dibenzothiophene and thiantrene in GC-FID whereas they are 0.02 ng mL(-1) for thiophen-2-carboxaldehyde and benzothiophene, and 0.003 ng mL(-1) for dibenzothiophene and thiantrene in GC-MS (SIM) with a relative standard deviation < or =7.  相似文献   

20.
Dispersive liquid-liquid microextraction (DLLME) combined with gas chromatography and mass spectrometry (GC-MS) was applied to the determination of five organophosphorous pesticides (OPPs) in water samples. The analytes included in this study were prophos, diazinon, chlorpyrifos methyl, fenchlorphos, and chlorpyrifos. The use of nonhalogenated solvents (cyclohexane, heptane, and octane) as extraction solvents was investigated using acetone, acetonitrile, or methanol, as dispersion solvents. The combination of less polar dispersion solvents (1-propanol and 2-propanol) and nonhalogenated extraction solvents was also studied in dispersive liquid-liquid microextraction for the first time. Several experimental conditions were tested (nature and volume of extraction solvents, nature and volume of dispersion solvents, salting-out effect) and the corresponding enrichment factors and recoveries were evaluated. The best microextraction condition was obtained using 50 μL of cyclohexane and 0.3 mL of 1-propanol. The detection and quantification limits were in the low ppt range, with values between 3.3-8.0 ng/L and 11.0-26.6 ng/L, respectively. Relative standard deviations were between 6.6 and 13.1% for a fortification level of 500 ng/L. At the same fortification level, the relative recoveries (RR) of Alvito's dam water, Judeu's river water, and well water samples were in the range of 50.3-97.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号