首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF4]) forms nonaqueous microemulsions with benzene with the aid of nonionic surfactant TX-100. The phase diagram of the ternary system was prepared, and the microstructures of the microemulsion were recognized. On the basis of the phase diagram, a series of ionic liquid-in-oil (IL/O) microemulsions were chosen and characterized by dynamic light scattering (DLS), which shows a similar swelling behavior to typical water-in-oil (W/O) microemulsions. The existence of IL pools in the IL/O microemulsion was confirmed by UV/Vis spectroscopic analysis with CoCl2 and methylene blue (MB) as the absorption probes. A constant polarity of the IL pool is observed, even if small amounts of water are added to the microemulsion, thus suggesting that the water molecules are solubilized in the polar outer shell of the microemulsion, as confirmed by FTIR spectra. 1H NMR spectroscopic analysis shows that these water molecules interact with the electronegative oxygen atoms of the oxyethylene (OE) units of TX-100 through hydrogen-bonding interactions, and the electronegative oxygen atoms of the water molecules attract the electropositive imidazolium rings of [bmim][BF4]. Hence, the water molecules are like a glue that stick the IL and OE units more tightly together and thus make the microemulsion system more stable. Considering the unique solubilization behavior of added water molecules, the IL/O microemulsion system may be used as a medium to prepare porous or hollow nanomaterials by hydrolysis reactions.  相似文献   

2.
We have continued the study of halide nucleophilicity in ionic liquids, concentrating on the effect of changing the anion ([BF(4)](-), [PF(6)](-), [SbF(6)](-), [OTf](-), and [N(Tf)(2)](-)) when the cation is [bmim](+) (where bmim = 1-butyl-3-methylimidazolium). It was found that the nucleophilicities of all the halides were lower in all of the ionic liquids than in dichloromethane. Changing the anion affected the order of halide nucleophilicity, e.g., in [bmim][BF(4)] the order of nucleophilicity was Cl(-)>Br(-)>I(-) while in [bmim][N(Tf)(2)] the order was Cl(-)相似文献   

3.
We have investigated solvent and rotational relaxation of coumarin 153 (C-153) in room-temperature ionic liquid (RTILs) 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF(4)]) and the ionic liquid confined in alkyl poly(oxyethylene glycol) ethers containing micelles. We have used octaethylene glycol monotetradecyl ether (C(14)E(8)) and octaethylene glycol monododecyl ether (C(12)E(8)) as surfactants. In the [bmim][BF(4)]-C(14)E(8) micelle, we have observed only a 22% increase in solvation time compared to neat [bmim][BF(4)], whereas in the [bmim][BF(4)]-C(12)E(8) system, we have observed approximately 57% increase in average solvation time due to micelle formation. However, the slowing down in solvation time on going from neat RTIL to RTIL-confined micelles is much smaller compared to that on going from water to water confined micellar aggregates. The 22-57% increase in solvation time is attributed to the slowing down of collective motions of cations and anions in micelles. The rotational relaxation times become faster in both the micelles compare to neat [bmim][BF(4)].  相似文献   

4.
Solutions of deuterated poly(ethylene oxide) (d-PEO) in 1-butyl-3-methyl imidazolium tetrafluoroborate ([bmim][BF4]), a prototype room-temperature ionic liquid (RTIL), have been studied at room temperature over a range of polymer concentrations, using small angle neutron scattering (SANS), characterizing the conformation of PEO dissolved in RTILs. [bmim][BF4] behaves as a good solvent for d-PEO, which organizes in this solvent in non entangled random coils. These findings will help in optimizing the designing of microemulsions in these potentially environmentally friendly solvents.  相似文献   

5.
Use of an ionic liquid [bmim][BF4] (bmim = 1-butyl-3-methylimidazolium) as solvent has resulted in the first extended coordination structure, the two-dimensional network [Cu(bpp)]BF4 [bpp = 1,3-bis(4-pyridyl)propane], produced via a solvothermal route.  相似文献   

6.
Modifying physicochemical properties of aqueous surfactant solutions in favorable fashion by addition of environmentally benign room-temperature ionic liquids (ILs) has enormous future potential. Due to its unusual properties, an IL may demonstrate a unique role in altering the properties of aqueous surfactant solutions. Changes in the properties of aqueous sodium dodecyl sulfate (SDS), an anionic surfactant, upon addition of a common and popular "hydrophilic" ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF4] are presented. Addition of low concentrations of [bmim][BF4] (i.e., 相似文献   

7.
The interaction of ionic liquid with water in 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/Triton X-100 (TX-100)/H2O ternary microemulsions, i.e., "[bmim][PF6]-in-water" microregions of the microemulsions, has been studied by the dynamics of solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 151 (C-151). The variation of the time constants of solvent relaxation of C-153 is very small with an increase in the [bmim][PF6]/TX-100 ratio (R). The rotational relaxation time of C-153 also remains unchanged in all micremulsions of different R values. The invariance of solvation and rotational relaxation times of C-153 indicates that the position of C-153 remains unaltered with an increase in R and probably the probe is located at the interfacial region of [bmim][PF6] and TX-100 in the microemulsions. On the other hand, in the case of C-151, with an increase in R the fast component of the solvation time gradually increases and the slow component gradually decreases, although the change in solvation time is small in comparison to that of microemulsions containing common polar solvents such as water, methanol, acetonitrile, etc. The rotational relaxation time of C-151 increases with an increase in R. This indicates that with an increase in the [bmim][PF6] content the number of C-151 molecules in the core of the microemulsions gradually increases. In general, the solvent relaxation time is retarded in this room temperature ionic liquid/water-containing microemulsion compared to that of a neat solvent, although retardation is very small compared to that of the solvent relaxation time of the conventional solvent in the core of the microemulsions.  相似文献   

8.
A hybrid, potentially green solvent system composed of tetraethylene glycol (TEG) and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) was investigated across all mole fractions with regard to the solvent properties of the mixture. For this purpose, a suite of absorbance- and fluorescence-based solvatochromic probes were utilized to explore solute-solvent and solvent-solvent interactions existing within the [bmim][PF(6)] + TEG system. These studies revealed an interesting and unusual synergistic solvent effect. In particular, a remarkable "hyperpolarity" was observed in which the E(T) value, comprising dipolarity/polarizability and hydrogen bond donor (HBD) acidity contributions, at intermediate mole fractions of the binary mixture well exceeded that of the most polar pure component (i.e., [bmim][PF(6)]). Independently determined dipolarity/polarizability (pi*) and HBD acidity (alpha) Kamlet-Taft values for the [bmim][PF(6)] + TEG mixtures were also observed to be anomalously high at intermediate mole fractions, whereas hydrogen bond acceptor (HBA) basicities (beta values) were much more in line with the ideal arithmetic values predicted on a mole fraction basis. Two well-established fluorescent polarity probes (pyrene and pyrene-1-carboxaldehyde) further illustrated notable hyperpolarity within [bmim][PF(6)] + TEG mixtures. Moreover, the steady-state fluorescence anisotropy of the molecular rotor rhodamine 6G and the excimer-to-monomer fluorescence ratio exhibited by the fluidity probe 1,3-bis-(1-pyrenyl)propane demonstrated that solute rotation and microfluidity within the [bmim][PF(6)] + TEG mixture were significantly reduced compared with expectations based on simple solvent mixing. A solvent ordering via formation of HBD/HBA complexes involving the C-2 proton of the [bmim(+)] cation and oxygen atoms of TEG, as well as interactions between [PF(6)(-)] and the terminal hydroxyl groups of TEG, is proposed to account for the observed behavior. Further spectroscopic evidence of strong intersolvent interactions occurring within the [bmim][PF(6)] + TEG mixture was provided, inter alia, by substantial frequency shifts in the [PF(6)(-)] asymmetric stretching mode observed in the infrared spectra as TEG was incrementally added to [bmim][PF(6)]. Overall, our observations contribute to a growing literature advocating the notion that ionic liquids and certain organic solvents form ordered, nanostructured, or microsegregated phases upon mixing.  相似文献   

9.
We have investigated the effect of deuterated water on the conformational equilibrium between the gauche and trans conformers of the [bmim] cation in mixtures of water and 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]), an ionic liquid, at room temperature. A comparison of the results obtained from solutions made with H(2)O and with D(2)O highlights an anomalous conformational change in the D(2)O solution showing an extended N-shaped behavior. The gauche conformer of the [bmim] cation in D(2)O increased up to x = ~50 (D(2)O mol %); however, it decreased up to higher water concentrations of x = ~85 before again increasing drastically toward x = ~100. We provide spectroscopic evidence that the anomalous conformational dynamics of the [bmim] cation in D(2)O is directly related to the H/D exchange reaction of the C-H group at position 2 of the imidazolium ring.  相似文献   

10.
[reaction: see text] The complex {[HC(3,5-Me(2)pz)(3)]Cu(NCMe)}BF(4) catalyzes the transfer of the :CHCO(2)Et unit from ethyl diazoacetate to several saturated and unsaturated substrates with very high yields and under biphasic conditions using the ionic liquid [bmim][PF(6)] and hexane as the reaction medium. The catalyst has been tested for several cycles of recovery and reuse without any loss of activity.  相似文献   

11.
The structural organization in mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)])/water or methanol was studied by infrared spectroscopy. No drastic change in the concentration dependence of the alkyl C-H band frequency was observed at high concentration of the ionic liquid. This behavior indicates a clustering of the ionic liquid in alkyl regions. Nevertheless, the presence of methanol significantly perturbs the ionic liquid-ionic liquid associations in the imidazolium region. On the basis of the responses to change in pressure and concentration, two different types of O-H species, i.e., free O-H and bonded O-H, were observed in the O-H stretching region. For [bmim][BF(4)]/water mixtures, the compression leads to loss of the free O-H band intensity. It is likely that free O-H is switched to bonded O-H as high pressures are applied. For [bmim][BF(4)]/methanol mixtures, the free O-H is still stable under high pressures.  相似文献   

12.
Hybrid "green" solvent systems composed of room-temperature ionic liquids (ILs) and poly(ethylene glycols) (PEGs) may have enormous future potential. Solvatochromic absorbance probe behavior is used to assess the physicochemical properties of the mixture composed of IL 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF(6)]) and PEG (average molecular weights of 200, 400, 600, and 1500) at ambient conditions. Lowest energy intramolecular charge-transfer absorbance maxima of a betaine dye, i.e., E(T)(N), indicates the dipolarity/polarizability and/or hydrogen-bond donating (HBD) acidity of the [bmim][PF 6] + PEG mixtures to be even higher than that of neat [bmim][PF(6)], the solution component with higher dipolarity/polarizability and/or HBD acidity. Dipolarity/polarizability (pi*) obtained separately from the electronic absorbance response of probe N, N-diethyl-4-nitroaniline shows a trend similar to E(T)(N ) thus confirming the unusually high dipolarity/polarizability of the [bmim][PF(6)] + PEG mixtures. Similar to E(T)(N ) and pi*, the HBD acidity (alpha) of [bmim][PF(6)] + PEG mixtures is also observed to be anomalously high. Contrary to what is observed for E(T)(N ), pi*, and alpha, the hydrogen-bond accepting (HBA) basicity (beta) of the [bmim][PF(6)] + PEG mixtures is observed to be lower than that predicted from ideal additive behavior indicating diminished HBA basicity of the mixture as compared to its neat components. A four-parameter simplified combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) equation is shown to satisfactorily predict the solvatochromic parameters within [bmim][PF(6)] + PEG mixtures. It is demonstrated that [bmim][PF(6)] + PEG mixtures possess physicochemical properties that are superior to those of either the neat IL or the neat PEG.  相似文献   

13.
Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room‐temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. 1H, 11B, and 19F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1‐butyl‐3‐methylimidazolium tetrafluoroborate ([bmim][BF4]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X‐100 (TX‐100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim]+ and [BF4]? in the presence of TX‐100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim]+ and [BF4]? and migration of Cl? within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures.  相似文献   

14.
(19)F,(1)H HOESY experiments with three ionic liquids ([bmim]BF(4), [bmim]PF(6) and [emim]BF(4)) were run in two different solvents and neat. The results give preferred probabilities of presence and enable us to systematically study interactions between the cations and the anions in the ionic liquid phase by NMR spectroscopy. The influence of different solvents and of the presence or absence of air (i.e. oxygen) is discussed. This enabled us to substantially speed up the NMR experiments and to develop a more precise method for the investigation of liquid-phase structures in ionic liquids.  相似文献   

15.
The behavior of an ionic liquid (IL) within aqueous micellar solutions is governed by its unique property to act as both an electrolyte and a cosolvent. The influence of the surfactant structure on the properties of aqueous micellar solutions of zwitterionic SB‐12, nonionic Brij‐35 and TX‐100, and anionic sodium dodecyl sulfate (SDS) in the presence of the “hydrophobic” IL 1‐butyl‐3‐methylimidazolium hexafluorophosphate ([bmim][PF6]) is assessed along with the possibility of forming oil‐in‐water microemulsions in which the IL acts as the “oil” phase. The solubility of [bmim][PF6] within aqueous micellar solutions increases with increasing surfactant concentration. In contrast to anionic SDS, the zwitterionic and nonionic surfactant solutions solubilize more [bmim][PF6] at higher concentrations and the average aggregate size remains almost unchanged. The formation of IL‐in‐water microemulsions when the concentration of [bmim][PF6] is above its aqueous solubility is suggested for nonionic Brij‐35 and TX‐100 aqueous surfactant solutions.  相似文献   

16.
The interaction of water with room temperature ionic liquid (RTIL) [bmim][PF6] has been studied in [bmim][PF6]/TX-100/water ternary microemulsions by solvent and rotational relaxation of coumarin 153 (C-153) and coumarin 490 (C-490). The rotational relaxation and average solvation time of C-153 and C-490 gradually decrease with increase in water content of the microemulsions. The gradual increase in the size of the microemulsion with increase in w0 (w0=[water]/[surfactant]) is evident from dynamic light scattering measurements. Consequently the mobility of the water molecules also increases. In comparison to pure water the retardation of solvation time in the RTIL containing ternary microemulsions is very less. The authors have also reported the solvation time of C-490 in neat [bmim][PF6]. The solvation time of C-490 in neat [bmim][PF6] is bimodal with time constants of 400 ps and 1.10 ns.  相似文献   

17.
王冠石  王小永 《化学通报》2017,80(8):777-782,771
添加离子液体会对表面活性剂在水溶液中的聚集行为产生重要影响。本文研究了吐温-20在中低浓度离子液体四氟硼酸1-丁基-3-甲基咪唑鎓([bmim][BF_4])中的胶束化行为。随着[bmim][BF_4]浓度(cIL)从0增加到0.2mol·L~(-1),吐温-20的临界胶束浓度逐渐增大。相比cIL0.05mol·L~(-1),在cIL0.05mol·L~(-1)时加入[bmim][BF_4]使吐温-20临界胶束浓度增大得更加显著。吐温-20胶束聚集数随着离子液体浓度的增加而逐渐减小,这一结果也说明加入离子液体会对吐温-20胶束的生成有抑制作用。吐温-20胶束化热力学研究表明,吐温-20在不同浓度离子液体中的胶束化是熵、焓共同驱动,并具有熵-焓补偿性。随着离子液体浓度的增加,吐温-20胶束平均粒径和胶束微粘性均表现出先增大后减小的变化,在cIL=0.05mol·L~(-1)时达到最大值。  相似文献   

18.
运用酰氟为中间体,在离子液体中,以多面体烷二羧酸为原料,研究了多面体烷氯乙基脲的合成新方法.在[bmim][BF4]离子液体中,合成了12个未见文献报道的多面体烷氯乙基脲,结构经核磁共振氢谱、碳谱和质谱确证.该方法与以酰氯为中间体的溶剂反应相比,具有产率高、分离简单和环境友好的特点.  相似文献   

19.
The ionic liquid (IL) 1-butyl-3-methylimidazolium tetrafluoroborate (bmimBF4) can form nonaqueous microemulsions with benzene by the aid of nonionic surfactant TX-100. The effect of water on ionic liquid-in-oil (IL/O) microemulsions was studied, and it was shown that the addition of small amount of water to the IL microemulsion contributed to the stability of microemulsion and thus increased the amount of solubilized bmimBF4 in the microemulsion. The conductivity measurements also showed that the attractive interactions between IL microdroplets were weakened, that is, the IL/O microemulsion becomes more stable in the present of some water. Fourier transform IR was carried out to analyze the states of the added water, and the result showed that these water molecules mainly behaved as bound water and trapped water, indicating that the water molecules are located in the palisade layers of the IL/O microemulsion. Furthermore, 1H NMR and 19F NMR spectra suggested that the added water molecules built the hydrogen binding network of imidazolium cations and H2O, BF4- anion and H2O, and at the same time the electronegative oxygen atoms of the oxyethylene units of TX-100 and water in the palisade layers, which made the palisade layers more firm and thus increased the stability of the microemulsion. The study can help in further understanding the formation mechanism of microemulsions. In addition, the characteristic solubilization behavior of the added water can provide an aqueous interface film for hydrolysis reactions and therefore may be used as an ideal medium to prepare porous or hollow nanomaterials.  相似文献   

20.
In this work, the nucleophilicities of chloride, bromide, and iodide have been determined in the ionic liquids [bmim][N(Tf)(2)], [bm(2)im][N(Tf)(2)], and [bmpy][N(Tf)(2)] (where bmim = 1-butyl-3-methylimidazolium, bm(2)im = 1-butyl-2,3-dimethylimidazolium, bmpy = 1-butyl-1-methylpyrrolidinium, and N(Tf)(2) = bis(trifluoromethylsulfonyl)imide). It was found that in the [bmim](+) ionic liquid, chloride was the least nucleophilic halide, but that changing the cation of the ionic liquid affected the relative nucleophilicities of the halides. The activation parameters DeltaH(), DeltaS(), and DeltaG() have been estimated for the reaction of chloride in each ionic liquid, and compared to a similar reaction in dichloromethane, where these parameters were found for reaction by both the free ion and the ion pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号