首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present the results of theoretical and experimental investigations of the motion of a spherical robot on a plane. The motion is actuated by a platform with omniwheels placed inside the robot. The control of the spherical robot is based on a dynamic model in the nonholonomic statement expressed as equations of motion in quasivelocities with indeterminate coefficients. A number of experiments have been carried out that confirm the adequacy of the dynamic model proposed.  相似文献   

2.
This paper deals with the dynamics and motion planning for a spherical rolling robot with a pendulum actuated by two motors. First, kinematic and dynamic models for the rolling robot are introduced. In general, not all feasible kinematic trajectories of the rolling carrier are dynamically realizable. A notable exception is when the contact trajectories on the sphere and on the plane are geodesic lines. Based on this consideration, a motion planning strategy for complete reconfiguration of the rolling robot is proposed. The strategy consists of two trivial movements and a nontrivial maneuver that is based on tracing multiple spherical triangles. To compute the sizes and the number of triangles, a reachability diagram is constructed. To define the control torques realizing the rest-to-rest motion along the geodesic lines, a geometric phase-based approach has been employed and tested under simulation. Compared with the minimum effort optimal control, the proposed technique is less computationally expensive while providing similar system performance, and thus it is more suitable for real-time applications.  相似文献   

3.
The paper deals with the dynamics of a spherical rolling robot actuated by internal rotors that are placed on orthogonal axes. The driving principle for such a robot exploits nonholonomic constraints to propel the rolling carrier. A full mathematical model as well as its reduced version are derived, and the inverse dynamics are addressed. It is shown that if the rotors are mounted on three orthogonal axes, any feasible kinematic trajectory of the rolling robot is dynamically realizable. For the case of only two rotors the conditions of controllability and dynamic realizability are established. It is shown that in moving the robot by tracing straight lines and circles in the contact plane the dynamically realizable trajectories are not represented by the circles on the sphere, which is a feature of the kinematic model of pure rolling. The implication of this fact to motion planning is explored under a case study. It is shown there that in maneuvering the robot by tracing circles on the sphere the dynamically realizable trajectories are essentially different from those resulted from kinematic models. The dynamic motion planning problem is then formulated in the optimal control settings, and properties of the optimal trajectories are illustrated under simulation.  相似文献   

4.
《Applied Mathematical Modelling》2014,38(21-22):5298-5314
In this study, a novel approach to robot navigation/planning by using half-cell electrochemical potentials is presented. The half-cell electrode’s potential is modelled by the Nernst equation to yield automatic search/detection of pipeline flaws by using the direct current voltage gradient (DCVG) technique. We introduce a theory of spherical volumetric electric density in the soil to sustain our postulates for navigational potential fields. The Nernst potential is correlated with the distance to a pipe’s flaw by proposing a fitted theoretical-empirical nonlinear regression model. From this, volumetric derivatives are solved as gradient-based fields to control wheeled robot’s motion. A nonlinear system for trajectory planning is proposed, and analytically solved by an algebraic solution. This solution directly adjust robot’s speed kinematic values to lead it toward the flaw. The inverse/forward kinematic constraints are non-holonomic, and are recursively integrated into the general potential equation. Analytical modelling is reported, and a set of numerical simulations are presented to prove the feasibility of the proposed formulations.  相似文献   

5.
We discuss explicit integration and bifurcation analysis of two non-holonomic problems. One of them is the Chaplygin’s problem on no-slip rolling of a balanced dynamically non-symmetric ball on a horizontal plane. The other, first posed by Yu. N. Fedorov, deals with the motion of a rigid body in a spherical support. For Chaplygin’s problem we consider in detail the transformation that Chaplygin used to integrate the equations when the constant of areas is zero. We revisit Chaplygin’s approach to clarify the geometry of this very important transformation, because in the original paper the transformation looks a cumbersome collection of highly non-transparent analytic manipulations. Understanding its geometry seriously facilitate the extension of the transformation to the case of a rigid body in a spherical support — the problem where almost no progress has been made since Yu.N. Fedorov posed it in 1988. In this paper we show that extending the transformation to the case of a spherical support allows us to integrate the equations of motion explicitly in terms of quadratures, detect mostly remarkable critical trajectories and study their stability, and perform an exhaustive qualitative analysis of motion. Some of the results may find their application in various technical devices and robot design. We also show that adding a gyrostat with constant angular momentum to the spherical-support system does not affect its integrability.  相似文献   

6.
The motion of a mobile three-wheel robotic vehicle on a horizontal surface is investigated. Passive rollers are fastened along the rim of each wheel, enabling each wheel not only to roll in the usual manner, but also to move perpendicular to its plane. Each of these wheels, as well as the ordinary wheels, is equipped with one drive, which rotates the wheel about its axis. The vehicle equipped with roller-carrying wheels can move in any direction with any orientation. The motion of the robot on a horizontal surface is studied in the case where the centre of mass of the robot deviates from the geometric centre of the triangular platform, and there is no slip at the points of contact of the rollers with the supporting surface. In the case of free motion of the robot, an additional first integral is pointed out and the exact solution found is analysed. An equation for specifying steady motions, under which a constant voltage is supplied to the DC motors that drive the wheels, is constructed. The stability of the rectilinear motion of the robot is investigated.  相似文献   

7.
Geometric Kinematic Control of a Spherical Rolling Robot   总被引:1,自引:0,他引:1  
We give a geometric account of kinematic control of a spherical rolling robot controlled by two internal wheels just like the toy robot Sphero. Particularly, we introduce the notion of shape space and fibers to the system by exploiting its symmetry and the principal bundle structure of its configuration space; the shape space encodes the rotational angles of the wheels, whereas each fiber encodes the translational and rotational configurations of the robot for a particular shape. We show that the system is fiber controllable—meaning any translational and rotational configuration modulo shapes is reachable—as well as find exact expressions of the geometric phase or holonomy under some particular controls. We also solve an optimal control problem of the spherical robot, show that it is completely integrable, and find an explicit solution of the problem.  相似文献   

8.
A novel pattern recognition approach to reactive navigation of a mobile robot is presented in this paper. A heuristic fuzzy-neuro network is developed for pattern-mapping between quantized ultrasonic sensory data and velocity commands to the robot. The design goal was to enable an autonomous mobile robot to navigate safely and efficiently to a target position in a previously unknown environment. Useful heuristic rules were combined with the fuzzy Kohonen clustering network (FKCN) to build the desired mapping between perception and motion. This method provides much faster response to unexpected events and is less sensitive to sensor misreading than conventional approaches. It allows continuous, fast motion of the mobile robot without any need to stop for obstacles. The effectiveness of the proposed method is demonstrated in a series of practical tests on our experimental mobile robot.  相似文献   

9.
In this study, mathematical modelling and dynamic response of a flexible robot manipulator with rotating-prismatic joint are investigated. The tip end of the flexible robot manipulator traces a multi-straight-line path under the action of an external driving torque and an axial force. Considered robot manipulator consists of a rotating prismatic joint and a sliding flexible arm with a tip mass. Flexible arm is assumed to be an Euler–Bernoulli beam carrying an end-mass. Equations of motion of the flexible manipulator are obtained by using Lagrange’s equation of motion. Effect of rotary inertia, axial shortening and gravitation is considered in the analysis. Equations of motion are solved by using fourth order Runge–Kutta method. Numerical simulations obtained by using a developed computer program are presented and physical trend of the results are discussed.  相似文献   

10.
基于模糊传感器的机器人动态障碍环境中的运动控制   总被引:2,自引:0,他引:2  
对自主式机械手在动态和部分已知且存在运动障碍环境中的运动规划和控制进行了研究,解决了自由碰撞运动控制中具有普遍意义的问题。利用人工势能场的机器人导航控制技术由模糊控制实现,系统的稳定性由李雅普诺夫原理保证。模糊控制器为机器人伺服提供控制指令,使机器人在不可预知的环境中能实时地、自主地选择到达目标的路径和方向。在动态环境的实时控制中,基于传感器的运动控制是处理未知模型和障碍物的重要控制方式。  相似文献   

11.
Theoretical and Mathematical Physics - We discuss the problem of rolling without slipping for a spherical shell with a pendulum actuator (spherical robot) installed in the geometric center of the...  相似文献   

12.
The problem of the motion of a rigid body possessing a plane of symmetry over the surface of a three-dimensional sphere under the action of a spherical analogue of Newtonian gravitation forces is considered. Approaches to introducing spherical analogues of the concepts of centre of mass and centre of gravity are discussed. The spherical analogue of “satellite approach” in the problem of the motion of a rigid body in a central field, which arises on the assumption that the dimensions of the body are small compared with the distance to the gravitating centre, is studied. Within the framework of satellite approach, assuming plane motion of the body, the question of the existence and stability of steady motions is investigated. A spherical analogue of the equation of the plane oscillations of a body in an elliptic orbit is derived.  相似文献   

13.
The development of robot or character motion tracking algorithms is inherently a challenging task. This is more than ever true when the latest trends in motion tracking are considered. Some researchers can deal with kinematic and dynamic constraints induced by the mechanical structure. Another class of researchers fulfills various types of optimality conditions, yet others include means of dealing with uncertainties about the robot or character and its environment. In order to deal with the complexity of developing motion tracking algorithms, it is proposed in this paper to design an interactive virtual physics environment with uncertainties for motion tracking based on sliding mode control. The advantages of doing so are outlined and a virtual environment presented which is well suited to support motion tracking development. The environment makes full use of multi-body system dynamics and a robust sliding mode controller independent of model as simulation kernel. So the environment is capable of simulating setups which fulfill the requirements posed by state-of-the-art motion tracking algorithm development. The demonstration results verified the validity of the environment.  相似文献   

14.
A vector-matrix formalism of nonholonomic mechanics is set up, which is used to construct mathematical models of mobile wheeled robots. The properties of free (ballistic) motions of mobile robots, which can be the basis of natural motion control modes, are studied. The analysis of uncontrollable motions is carried out, taking transients in circuits of the electric drive into consideration. The problem of determining voltages supplied to drives of the robot that ensure implementation of program motions is discussed. One candidate solution of a problem of planning a pathway of the robot in an ordered medium is presented. A mobile single-wheeled robot with a gyroscopic stabilization system is described—the “Gyrowheel” robot, capable of moving autonomously along a straight-line (rectilinear motion), as well as along a curvilinear pathway. __________ Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 11, No. 8, pp. 29–80, 2005.  相似文献   

15.
The paper studies the motion laws influence over the VIPAS1 industrial robot working. The motion differential equations, that govern the motion robot were established. Using them we can study the direct problem for the robot dynamics. There are the given motion laws for the accelerated and decreasing motion having triangular, trapezoidal and parabolic forms. The graphics of the forces and moments give us the possibility to make some recommandations under energetic aspects, for the optimal solutions about the VIPAS1 industrial robot. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
The equations of motion of three-wheeled robots with two drive wheels and one passive caster wheel are derived and investigated. The control of longitudinal motion and turns of such a robot is implemented by appropriate control of the independent motors of the drive wheels. The research is carried out under the assumption that the robot is moving on a horizontal plane surface and that the wheels do not slip. A system of two non-linear equations with two controls is obtained for the non-holonomic system considered. The dependence of the phase portrait on the values of the constant controls and parameters of the system, taking into account the asymmetry of the robot, is investigated. The results obtained are not only of theoretical but also of practical interest.  相似文献   

17.
This study was inspired by the human motor control system in its ability to accommodate a wide variety of motions. By contrast, the biologically inspired robot learning controller usually encounters huge learning space problems in many practical applications. A hypothesis for the superiority of the human motor control system is that it may have simplified the motion command at the expense of motion accuracy. This tradeoff provides an insight into how fast and simple control can be achieved when a robot task does not demand high accuracy. Two motion command simplification schemes are proposed in this paper based on the equilibrium-point hypothesis for human motion control. Investigation into the tradeoff between motion accuracy and command simplification reported in this paper was conducted using robot manipulators to generate signatures. Signature generation involves fast handwriting, and handwriting is a human skill acquired via practice. Because humans learn how to sign their names after they learn how to write, in the second learning process, they somehow learn to trade motion accuracy for motion speed and command simplicity, since signatures are simplified forms of original handwriting. Experiments are reported that demonstrate the effectiveness of the proposed schemes.  相似文献   

18.
This work deals with the modelling and control of the motion of a disk rolling without slipping on a rigid spherical dome. It is assumed here that the motion of the disk is controlled by a tilting moment, a directional moment, and a pedalling moment. First, a mathematical model of the motion of the disk rolling on the dome is derived. Then, by using a kind of an inverse control transformation, a control strategy is proposed under which the motion of the disk is stabilized and is able asymptotically to track any smooth trajectory which is located on the spherical dome.  相似文献   

19.
This work studies a number of approaches to solving the motion planning problem for a mobile robot with a trailer. Different control models of car-like robots are considered from the differential-geometric point of view. The same models can also be used for controlling a mobile robot with a trailer. However, in cases where the position of the trailer is of importance, i.e., when it is moving backward, a more complex approach should be applied. At the end of the article, such an approach, based on recent works in sub-Riemannian geometry, is described. It is applied to the problem of reparking a trailer and implemented in the algorithm for parking a mobile robot with a trailer.  相似文献   

20.
《Fuzzy Sets and Systems》2004,144(2):285-296
In robot learning control, the learning space for executing the general motions of multi-joint robot manipulators is very complicated. Thus, when the learning controllers are employed as major roles in motion governing, the motion variety requires them to consume excessive amount of memory. Therefore, in spite of their ability to generalize, the learning controllers are usually used as subordinates to conventional controllers or the learning process needs to be repeated each time a new trajectory is encountered. To simplify learning space complexity, we propose, from the standpoint of learning control, that robot motions be classified according to their similarities. The learning controller can then be designed to govern groups of robot motions with high degrees of similarity without consuming excessive memory resources. Motion classification based on using the PUMA 560 robot manipulator demonstrates the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号