首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the molecules of both methyl (1RS,3SR,3aRS,6aSR)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxo‐5‐phenyloctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H24N4O4, (I), and methyl (1RS,3SR,3aRS,6aSR)‐5‐(4‐chlorophenyl)‐1‐methyl‐3‐(3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl)‐4,6‐dioxooctahydropyrrolo[3,4‐c]pyrrole‐1‐carboxylate, C25H23ClN4O4, (II), the two rings of the pyrrolopyrrole fragment are both nonplanar, with conformations close to half‐chair forms. The overall conformations of the molecules of (I) and (II) are very similar, apart from the orientation of the ester function. The molecules of (I) are linked into sheets by a combination of an N—H...π(pyrrole) hydrogen bond and three independent C—H...O hydrogen bonds. The molecules of (II) are also linked into sheets, which are generated by a combination of an N—H...N hydrogen bond and two independent C—H...O hydrogen bonds, weakly augmented by a C—H...π(arene) hydrogen bond.  相似文献   

2.
The understanding of intermolecular interactions is a key objective of crystal engineering in order to exploit the derived knowledge for the rational design of new molecular solids with tailored physical and chemical properties. The tools and theories of crystal engineering are indispensable for the rational design of (pharmaceutical) cocrystals. The results of cocrystallization experiments of the antithyroid drug 6‐propyl‐2‐thiouracil (PTU) with 2,4‐diaminopyrimidine (DAPY), and of 6‐methoxymethyl‐2‐thiouracil (MOMTU) with DAPY and 2,4,6‐triaminopyrimidine (TAPY), respectively, are reported. PTU and MOMTU show a high structural similarity and differ only in the replacement of a methylene group (–CH2–) with an O atom in the side chain, thus introducing an additional hydrogen‐bond acceptor in MOMTU. Both molecules contain an ADA hydrogen‐bonding site (A = acceptor and D = donor), while the coformers DAPY and TAPY both show complementary DAD sites and therefore should be capable of forming a mixed ADA/DAD synthon with each other, i.e. N—H…O, N—H…N and N—H…S hydrogen bonds. The experiments yielded one solvated cocrystal salt of PTU with DAPY, four different solvates of MOMTU, one ionic cocrystal of MOMTU with DAPY and one cocrystal salt of MOMTU with TAPY, namely 2,4‐diaminopyrimidinium 6‐propyl‐2‐thiouracilate–2,4‐diaminopyrimidine–N,N‐dimethylacetamide–water (1/1/1/1) (the systematic name for 6‐propyl‐2‐thiouracilate is 6‐oxo‐4‐propyl‐2‐sulfanylidene‐1,2,3,6‐tetrahydropyrimidin‐1‐ide), C4H7N4+·C7H9N2OS·C4H6N4·C4H9NO·H2O, (I), 6‐methoxymethyl‐2‐thiouracil–N,N‐dimethylformamide (1/1), C6H8N2O2S·C3H7NO, (II), 6‐methoxymethyl‐2‐thiouracil–N,N‐dimethylacetamide (1/1), C6H8N2O2S·C4H9NO, (III), 6‐methoxymethyl‐2‐thiouracil–dimethyl sulfoxide (1/1), C6H8N2O2S·C2H6OS, (IV), 6‐methoxymethyl‐2‐thiouracil–1‐methylpyrrolidin‐2‐one (1/1), C6H8N2O2S·C5H9NO, (V), 2,4‐diaminopyrimidinium 6‐methoxymethyl‐2‐thiouracilate (the systematic name for 6‐methoxymethyl‐2‐thiouracilate is 4‐methoxymethyl‐6‐oxo‐2‐sulfanylidene‐1,2,3,6‐tetrahydropyrimidin‐1‐ide), C4H7N4+·C6H7N2O2S, (VI), and 2,4,6‐triaminopyrimidinium 6‐methoxymethyl‐2‐thiouracilate–6‐methoxymethyl‐2‐thiouracil (1/1), C4H8N5+·C6H7N2O2S·C6H8N2O2S, (VII). Whereas in (I) only an AA/DD hydrogen‐bonding interaction was formed, the structures of (VI) and (VII) both display the desired ADA/DAD synthon. Conformational studies on the side chains of PTU and MOMTU also revealed a significant deviation for cocrystals (VI) and (VII), leading to the desired enhancement of the hydrogen‐bond pattern within the crystal.  相似文献   

3.
Methyl 4‐(4‐fluorophenyl)‐6‐methyl‐2‐oxo‐1,2,3,4‐tetrahydropyrimidine‐5‐carboxylate, ( I ), was found to exhibit solvatomorphism. The compound was prepared using a classic Biginelli reaction under mild conditions, without using catalysts and in a solvent‐free environment. Single crystals of two solvatomorphs and one anhydrous form of ( I ) were obtained through various crystallization methods. The anhydrous form, C13H13FN2O3, was found to crystallize in the monoclinic space group C2/c. It showed one molecule in the asymmetric unit. The solvatomorph with included carbon tetrachloride, C13H13FN2O3·0.25CCl4, was found to crystallize in the monoclinic space group P2/n. The asymmetric unit revealed two molecules of ( I ) and one disordered carbon tetrachloride solvent molecule that lies on a twofold axis. A solvatomorph including ethyl acetate, C13H13FN2O3·0.5C4H8O2, was found to crystallize in the triclinic space group P with one molecule of ( I ) and one solvent molecule on an inversion centre in the asymmetric unit. The solvent molecules in the solvatomorphs were found to be disordered, with a unique case of crystallographically induced disorder in ( I ) crystallized with ethyl acetate. Hydrogen‐bonding interactions, for example, N—H…O=C, C—H…O=C, C—H…F and C—H…π, contribute to the crystal packing with the formation of a characteristic dimer through N—H…O=C interactions in all three forms. The solvatomorphs display additional interactions, such as C—F…N and C—Cl…π, which are responsible for their molecular arrangement. The thermal properties of the forms were analysed through differential scanning calorimetry (DSC), hot stage microscopy (HSM) and thermogravimetric analysis (TGA) experiments.  相似文献   

4.
Substituted benzoic acid and cinnamic acid esters are of interest as tyrosinase inhibitors and the development of such inhibitors may help in diminishing many dermatological disorders. The tyrosinase enzyme has also been linked to Parkinson's disease. In view of hydroxylated compounds having ester and amide functionalities to potentially inhibit tyrosinase, we herein report the synthesis and crystal structures of two amide‐based derivatives, namely N‐(4‐acetylphenyl)‐2‐chloroacetamide, C10H10ClNO2, (I), and 2‐(4‐acetylanilino)‐2‐oxoethyl cinnamate, C19H17NO4, (II). In compound (I), the acetylphenyl ring and the N—(C=O)—C unit of the acetamide group are almost coplanar, with a dihedral angle of 7.39 (18)°. Instead of esterification, a cheaper and more efficient synthetic method has been developed for the preparation of compound (II). The molecular geometry of compound (II) is a V‐shape. The acetamide and cinnamate groups are almost planar, with mean deviations of 0.088 and 0.046 Å, respectively; the dihedral angle between these groups is 77.39 (7)°. The carbonyl O atoms are positioned syn and anti to the amide carbonyl O atom. In the crystals of (I) and (II), N—H…O, C—H…O and C—H…π interactions link the molecules into a three‐dimensional network.  相似文献   

5.
A path to new synthons for application in crystal engineering is the replacement of a strong hydrogen‐bond acceptor, like a C=O group, with a weaker acceptor, like a C=S group, in doubly or triply hydrogen‐bonded synthons. For instance, if the C=O group at the 2‐position of barbituric acid is changed into a C=S group, 2‐thiobarbituric acid is obtained. Each of the compounds comprises two ADA hydrogen‐bonding sites (D = donor and A = acceptor). We report the results of cocrystallization experiments of barbituric acid and 2‐thiobarbituric acid, respectively, with 2,4‐diaminopyrimidine, which contains a complementary DAD hydrogen‐bonding site and is therefore capable of forming an ADA/DAD synthon with barbituric acid and 2‐thiobarbituric acid. In addition, pure 2,4‐diaminopyrimidine was crystallized in order to study its preferred hydrogen‐bonding motifs. The experiments yielded one ansolvate of 2,4‐diaminopyrimidine (pyrimidine‐2,4‐diamine, DAPY), C4H6N4, (I), three solvates of DAPY, namely 2,4‐diaminopyrimidine–1,4‐dioxane (2/1), 2C4H6N4·C4H8O2, (II), 2,4‐diaminopyrimidine–N,N‐dimethylacetamide (1/1), C4H6N4·C4H9NO, (III), and 2,4‐diaminopyrimidine–1‐methylpyrrolidin‐2‐one (1/1), C4H6N4·C5H9NO, (IV), one salt of barbituric acid, viz. 2,4‐diaminopyrimidinium barbiturate (barbiturate is 2,4,6‐trioxopyrimidin‐5‐ide), C4H7N4+·C4H3N2O3, (V), and two solvated salts of 2‐thiobarbituric acid, viz. 2,4‐diaminopyrimidinium 2‐thiobarbiturate–N,N‐dimethylformamide (1/2) (2‐thiobarbiturate is 4,6‐dioxo‐2‐sulfanylidenepyrimidin‐5‐ide), C4H7N4+·C4H3N2O2S·2C3H7NO, (VI), and 2,4‐diaminopyrimidinium 2‐thiobarbiturate–N,N‐dimethylacetamide (1/2), C4H7N4+·C4H3N2O2S·2C4H9NO, (VII). The ADA/DAD synthon was succesfully formed in the salt of barbituric acid, i.e. (V), as well as in the salts of 2‐thiobarbituric acid, i.e. (VI) and (VII). In the crystal structures of 2,4‐diaminopyrimidine, i.e. (I)–(IV), R22(8) N—H…N hydrogen‐bond motifs are preferred and, in two structures, additional R32(8) patterns were observed.  相似文献   

6.
The title compound, C23H17N3O4S, crystallizes with Z′ = 3 in the space group P. Two of the three independent molecules are broadly similar in terms of both their molecular conformations and their participation in hydrogen bonds, but the third molecule differs from the other two in both of these respects. The molecules are linked by a combination of N—H...O, N—H...N, C—H...O, C—H...N and C—H...π(arene) hydrogen bonds to form a continuous three‐dimensional framework structure within which a centrosymmetric six‐molecule aggregate can be identified as a key structural element.  相似文献   

7.
The title compound, C18H18N4OS2, was prepared by reaction of S,S‐diethyl 2‐thenoylimidodithiocarbonate with 5‐amino‐3‐(4‐methylphenyl)‐1H‐pyrazole using microwave irradiation under solvent‐free conditions. In the molecule, the thiophene unit is disordered over two sets of atomic sites, with occupancies of 0.814 (4) and 0.186 (4), and the bonded distances provide evidence for polarization in the acylthiourea fragment and for aromatic type delocalization in the pyrazole ring. An intramolecular N—H...O hydrogen bond is present, forming an S(6) motif, and molecules are linked by N—H...O and N—H...N hydrogen bonds to form a ribbon in which centrosymmetric R22(4) rings, built from N—H...O hydrogen bonds and flanked by inversion‐related pairs of S(6) rings, alternate with centrosymmetric R22(6) rings built from N—H...N hydrogen bonds.  相似文献   

8.
The title compound, C21H26FN3O7, is assembled by N—H...O and O—H...O hydrogen bonds into well‐separated two‐dimensional layers of about 15 Å thickness. The crescent conformation of the molecules is stabilized by weak intramolecular C—H...O and C—H...F hydrogen bonds. The uridine moiety adopts an anti conformation. The ribofuranose ring exists in an envelope conformation. All the endocyclic uracil bonds are shorter than normal single C—N and C—C bonds, and five of them have comparable lengths, which implies a considerable degree of delocalization of the electron density within this ring.  相似文献   

9.
Six closely related N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]arylamides have been synthesized and structurally characterized, together with a representative reaction intermediate. In each of N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]benzamide, C20H16ClNO2S, (I), N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐4‐phenylbenzamide, C26H20ClNO2S, (II), and 2‐bromo‐N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]benzamide, C20H15BrClNO2S, (III), the molecules are disordered over two sets of atomic sites, with occupancies of 0.894 (8) and 0.106 (8) in (I), 0.832 (5) and 0.168 (5) in (II), and 0.7006 (12) and 0.2994 (12) in (III). In each of N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2‐iodobenzamide, C20H15ClINO2S, (IV), and N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2‐methoxybenzamide, C21H18ClNO3S, (V), the molecules are fully ordered, but in N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2,6‐difluorobenzamide, C20H14ClF2NO2S, (VI), which crystallizes with Z′ = 2 in the space group C2/c, one of the two independent molecules is fully ordered, while the other is disordered over two sets of atomic sites having occupancies of 0.916 (3) and 0.084 (3). All of the molecules in compounds (I)–(VI) exhibit an intramolecular N—H…O hydrogen bond. The molecules of (I) and (VI) are linked by C—H…O hydrogen bonds to form finite zero‐dimensional dimers, which are cyclic in (I) and acyclic in (VI), those of (III) are linked by C—H…π(arene) hydrogen bonds to form simple chains, and those of (IV) and (V) are linked into different types of chains of rings, built in each case from a combination of C—H…O and C—H…π(arene) hydrogen bonds. Two C—H…O hydrogen bonds link the molecules of (II) into sheets containing three types of ring. In benzotriazol‐1‐yl 3,4‐dimethoxybenzoate, C15H13N3O4, (VII), the benzoate component is planar and makes a dihedral angle of 84.51 (6)° with the benzotriazole unit. Comparisons are made with related compounds.  相似文献   

10.
Ocotillol‐type saponins have a wide spectrum of biological activities. Previous studies indicated that the configuration at the C24 position may be responsible for their stereoselectivity in pharmacological action and pharmacokinetics. Natural ocotillol‐type saponins share a 20(S)‐form but it has been found that the 20(R)‐stereoisomers have different pharmacological effects. The semisynthesis of 20(R)‐ocotillol‐type saponins has not been reported and it is therefore worthwhile clarifying their crystal structures. Two C24 epimeric 20(R)‐ocotillol‐type saponins, namely (20R,24S)‐20,24‐epoxydammarane‐3β,12β,25‐triol, C30H52O4, (III), and (20R,24R)‐20,24‐epoxydammarane‐3β,12β,25‐triol monohydrate, C30H52O4·H2O, (IV), were synthesized, and their structures were elucidated by spectral studies and finally confirmed by single‐crystal X‐ray diffraction. The (Me)C—O—C—C(OH) torsion angle of (III) is 146.41 (14)°, whereas the corresponding torsion angle of (IV) is −146.4 (7)°, indicating a different conformation at the C24 position. The crystal stacking in (III) generates an R44(8) motif, through which the molecules are linked into a one‐dimensional double chain. The chains are linked via nonclassical C—H…O hydrogen bonds into a two‐dimensional network, and further stacked into a three‐dimensional structure. In contrast to (III), epimer (IV) crystallizes as a hydrate, in which the water molecules act as hydrogen‐bond donors linking one‐dimensional chains into a two‐dimensional network through intermolecular O—H…O hydrogen bonds. The hydrogen‐bonded chains extend helically along the crystallographic a axis and generate a C44(8) motif.  相似文献   

11.
The structures of two hydrated salts of 4‐aminophenylarsonic acid (p‐arsanilic acid), namely ammonium 4‐aminophenylarsonate monohydrate, NH4+·C6H7AsNO3·H2O, (I), and the one‐dimensional coordination polymer catena‐poly[[(4‐aminophenylarsonato‐κO)diaquasodium]‐μ‐aqua], [Na(C6H7AsNO3)(H2O)3]n, (II), have been determined. In the structure of the ammonium salt, (I), the ammonium cations, arsonate anions and water molecules interact through inter‐species N—H...O and arsonate and water O—H...O hydrogen bonds, giving the common two‐dimensional layers lying parallel to (010). These layers are extended into three dimensions through bridging hydrogen‐bonding interactions involving the para‐amine group acting both as a donor and an acceptor. In the structure of the sodium salt, (II), the Na+ cation is coordinated by five O‐atom donors, one from a single monodentate arsonate ligand, two from monodentate water molecules and two from bridging water molecules, giving a very distorted square‐pyramidal coordination environment. The water bridges generate one‐dimensional chains extending along c and extensive interchain O—H...O and N—H...O hydrogen‐bonding interactions link these chains, giving an overall three‐dimensional structure. The two structures reported here are the first reported examples of salts of p‐arsanilic acid.  相似文献   

12.
The X‐ray single‐crystal structure determinations of the chemically related compounds 2‐amino‐1,3,4‐thiadiazolium hydrogen oxalate, C2H4N3S+·C2HO4, (I), 2‐amino‐1,3,4‐thiadiazole–succinic acid (1/2), C2H3N3S·2C4H6O4, (II), 2‐amino‐1,3,4‐thiadiazole–glutaric acid (1/1), C2H3N3S·C5H8O4, (III), and 2‐amino‐1,3,4‐thiadiazole–adipic acid (1/1), C2H3N3S·C6H10O4, (IV), are reported and their hydrogen‐bonding patterns are compared. The hydrogen bonds are of the types N—H...O or O—H...N and are of moderate strength. In some cases, weak C—H...O interactions are also present. Compound (II) differs from the others not only in the molar ratio of base and acid (1:2), but also in its hydrogen‐bonding pattern, which is based on chain motifs. In (I), (III) and (IV), the most prominent feature is the presence of an R22(8) graph‐set motif formed by N—H...O and O—H...N hydrogen bonds, which are present in all structures except for (I), where only a pair of N—H...O hydrogen bonds is present, in agreement with the greater acidity of oxalic acid. There are nonbonding S...O interactions present in all four structures. The difference electron‐density maps show a lack of electron density about the S atom along the S...O vector. In all four structures, the carboxylic acid H atoms are present in a rare configuration with a C—C—O—H torsion angle of ∼0°. In the structures of (II)–(IV), the C—C—O—H torsion angle of the second carboxylic acid group has the more common value of ∼|180|°. The dicarboxylic acid molecules are situated on crystallographic inversion centres in (II). The Raman and IR spectra of the title compounds are presented and analysed.  相似文献   

13.
Four new cocrystals of pyrimidin‐2‐amine and propane‐1,3‐dicarboxylic (glutaric) acid were crystallized from three different solvents (acetonitrile, methanol and a 50:50 wt% mixture of methanol and chloroform) and their crystal structures determined. Two of the cocrystals, namely pyrimidin‐2‐amine–glutaric acid (1/1), C4H5N3·C6H8O4, (I) and (II), are polymorphs. The glutaric acid molecule in (I) has a linear conformation, whereas it is twisted in (II). The pyrimidin‐2‐amine–glutaric acid (2/1) cocrystal, 2C4H5N3·C6H8O4, (III), contains glutaric acid in its linear form. Cocrystal–salt bis(2‐aminopyrimidinium) glutarate–glutaric acid (1/2), 2C4H6N3+·C6H6O42−·2C6H8O4, (IV), was crystallized from the same solvent as cocrystal (II), supporting the idea of a cocrystal–salt continuum when both the neutral and ionic forms are present in appreciable concentrations in solution. The diversity of the packing motifs in (I)–(IV) is mainly caused by the conformational flexibility of glutaric acid, while the hydrogen‐bond patterns show certain similarities in all four structures.  相似文献   

14.
The crystal engineering of coordination polymers has aroused interest due to their structural versatility, unique properties and applications in different areas of science. The selection of appropriate ligands as building blocks is critical in order to afford a range of topologies. Alkali metal cations are known for their mainly ionic chemistry in aqueous media. Their coordination number varies depending on the size of the binding partners, and on the electrostatic interaction between the ligands and the metal ions. The two‐dimensional coordination polymer poly[tetra‐μ‐aqua‐[μ4‐4,4′‐(diazenediyl)bis(5‐oxo‐1H‐1,2,4‐triazolido)]disodium(I)], [Na2(C4H2N8O2)(H2O)4]n, (I), was synthesized from 4‐amino‐1H‐1,2,4‐triazol‐5(4H)‐one (ATO) and its single‐crystal structure determined. The mid‐point of the imino N=N bond of the 4,4′‐(diazenediyl)bis(5‐oxo‐1H‐1,2,4‐triazolide) (ZTO2−) ligand is located on an inversion centre. The asymmetric unit consists of one Na+ cation, half a bridging ZTO2− ligand and two bridging water ligands. Each Na+ cation is coordinated in a trigonal antiprismatic fashion by six O atoms, i.e. two from two ZTO2− ligands and the remaining four from bridging water ligands. The Na+ cation is located near a glide plane, thus the two bridging O atoms from the two coordinating ZTO2− ligands are on adjacent apices of the trigonal antiprism, rather than being in an anti configuration. All water and ZTO2− ligands act as bridging ligands between metal centres. Each Na+ metal centre is bridged to a neigbouring Na+ cation by two water molecules to give a one‐dimensional [Na(H2O)2]n chain. The organic ZTO2− ligand, an O atom of which also bridges the same pair of Na+ cations, then crosslinks these [Na(H2O)2]n chains to form two‐dimensional sheets. The two‐dimensional sheets are further connected by intermolecular hydrogen bonds, giving rise to a stabile hydrogen‐bonded network.  相似文献   

15.
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).  相似文献   

16.
The structures of the 1:1 hydrated proton‐transfer compounds of isonipecotamide (piperidine‐4‐carboxamide) with oxalic acid, 4‐carbamoylpiperidinium hydrogen oxalate dihydrate, C6H13N2O+·C2HO4·2H2O, (I), and with adipic acid, bis(4‐carbamoylpiperidinium) adipate dihydrate, 2C6H13N2O+·C6H8O42−·2H2O, (II), are three‐dimensional hydrogen‐bonded constructs involving several different types of enlarged water‐bridged cyclic associations. In the structure of (I), the oxalate monoanions give head‐to‐tail carboxylic acid O—H...Ocarboxyl hydrogen‐bonding interactions, forming C(5) chain substructures which extend along a. The isonipecotamide cations also give parallel chain substructures through amide N—H...O hydrogen bonds, the chains being linked across b and down c by alternating water bridges involving both carboxyl and amide O‐atom acceptors and amide and piperidinium N—H...Ocarboxyl hydrogen bonds, generating cyclic R43(10) and R32(11) motifs. In the structure of (II), the asymmetric unit comprises a piperidinium cation, half an adipate dianion, which lies across a crystallographic inversion centre, and a solvent water molecule. In the crystal structure, the two inversion‐related cations are interlinked through the two water molecules, which act as acceptors in dual amide N—H...Owater hydrogen bonds, to give a cyclic R42(8) association which is conjoined with an R44(12) motif. Further N—H...Owater, water O—H...Oamide and piperidinium N—H...Ocarboxyl hydrogen bonds give the overall three‐dimensional structure. The structures reported here further demonstrate the utility of the isonipecotamide cation as a synthon for the generation of stable hydrogen‐bonded structures. The presence of solvent water molecules in these structures is largely responsible for the non‐occurrence of the common hydrogen‐bonded amide–amide dimer, promoting instead various expanded cyclic hydrogen‐bonding motifs.  相似文献   

17.
In bis(2‐aminoanilinum) fumarate, 2C6H9N2+·C4H2O42−, (I), the asymmetric unit consists of two aminoanilinium cations and one fumarate dianion, whereas in 3‐methylanilinium hydrogen fumarate, C7H10N+·C4H3O4, (II), and 4‐chloroanilinium hydrogen fumarate, C6H7ClN+·C4H3O4, (III), the asymmetric unit contains two symmetry‐independent hydrogen fumate anions and anilinium cations with a slight difference in their geometric parameters; the two salts are isostructural. In (II) and (III), the carboxylic acid H atoms of the anions are disordered across both ends of the anion, with equal site occupancies of 0.50. Both the 4‐chloroanilinium cations of (III) are disordered over two orientations with major occupancies fixed at 0.60 in each case. The hydrogen fumarate anions of (II) and (III) form one‐dimensional anionic chains linked through O—H...O hydrogen bonds. Salts (II) and (III) form two‐dimensional supramolecular sheets built from R44(16), R44(18), R55(25) and C22(14) motifs extending parallel to the (010) plane, whereas in (I), an (010) sheet is formed built from two R43(13) motifs, two R22(9) motifs and an R44(18) motif.  相似文献   

18.
The coordination polymer catena‐poly[[(dimethylformamide‐κO)[μ3‐5‐(1,3‐dioxo‐4,5,6,7‐tetraphenylisoindolin‐2‐yl)isophthalato‐κ4O1,O1′:O3:O3′](methanol‐κO)manganese(III)] dimethylformamide monosolvate], {[Mn(C40H23NO6)(CH3OH)(C3H7NO)]·C3H7NO}n, has been synthesized from the reaction of 5‐(1,3‐dioxo‐4,5,6,7‐tetraphenylisoindolin‐2‐yl)isophthalic acid and manganese(II) acetate tetrahydrate in a glass tube at room temperature by solvent diffusion. The MnII centre is hexacoordinated by two O atoms from one chelating carboxylate group, by two O atoms from two monodentate carboxylate groups and by one O atom each from a methanol and a dimethylformamide (DMF) ligand. The single‐crystal structure crystallizes in the triclinic space group P. Moreover, the coordination polymer shows one‐dimensional 2‐connected {0} uninodal chain networks, and free DMF molecules are connected to the chains by O—H...O hydrogen bonds. The thermogravimetric and photoluminescent properties of the compound have also been investigated.  相似文献   

19.
Cyclohexylamine reacts with 5‐chloro‐3‐methyl‐1‐(pyridin‐2‐yl)‐1H‐pyrazole‐4‐carbaldehyde to give 5‐cyclohexylamino‐3‐methyl‐1‐(pyridin‐2‐yl)‐1H‐pyrazole‐4‐carbaldehyde, C16H20N4O, (I), formed by nucleophilic substitution, but with 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde the product is (Z)‐4‐[(cyclohexylamino)methylidene]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐5(4H)‐one, C17H21N3O, (II), formed by condensation followed by hydrolysis. Compound (II) crystallizes with Z′ = 2, and in one of the two independent molecular types the cyclohexylamine unit is disordered over two sets of atomic sites having occupancies of 0.65 (3) and 0.35 (3). The vinylogous amide portion in each compound shows evidence of electronic polarization, such that in each the O atom carries a partial negative charge and the N atom of the cyclohexylamine portion carries a partial positive charge. The molecules of (I) contain an intramolecular N—H...N hydrogen bond, and they are linked by C—H...O hydrogen bonds to form sheets. Each of the two independent molecules of (II) contains an intramolecular N—H...O hydrogen bond and each molecular type forms a centrosymmetric dimer containing one R22(4) ring and two inversion‐related S(6) rings.  相似文献   

20.
Weak interactions between organic molecules are important in solid‐state structures where the sum of the weaker interactions support the overall three‐dimensional crystal structure. The sp‐C—H…N hydrogen‐bonding interaction is strong enough to promote the deliberate cocrystallization of a series of diynes with a series of dipyridines. It is also possible that a similar series of cocrystals could be formed between molecules containing a terminal alkyne and molecules which contain carbonyl O atoms as the potential hydrogen‐bond acceptor. I now report the crystal structure of two cocrystals that support this hypothesis. The 1:1 cocrystal of 1,4‐diethynylbenzene with 1,3‐diacetylbenzene, C10H6·C10H10O2, (1), and the 1:1 cocrystal of 1,4‐diethynylbenzene with benzene‐1,4‐dicarbaldehyde, C10H6·C8H6O2, (2), are presented. In both cocrystals, a strong nonconventional ethynyl–carbonyl sp‐C—H…O hydrogen bond is observed between the components. In cocrystal (1), the C—H…O hydrogen‐bond angle is 171.8 (16)° and the H…O and C…O hydrogen‐bond distances are 2.200 (19) and 3.139 (2) Å, respectively. In cocrystal (2), the C—H…O hydrogen‐bond angle is 172.5 (16)° and the H…O and C…O hydrogen‐bond distances are 2.25 (2) and 3.203 (2) Å, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号