首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A facile approach for preparation of photoluminescent (PL) carbon dots (CDs) is reported. The three resulting CDs emit bright and stable red, green and blue (RGB) colors of luminescence, under a single ultraviolet‐light excitation. Alterations of PL emission of these CDs are tentatively proposed to result from the difference in their particle size and nitrogen content. Interestingly, up‐conversion (UC)PL of these CDs is also observed. Moreover, flexible full‐color emissive PVA films can be achieved through mixing two or three CDs in the appropriate ratios. These CDs also show low cytotoxicity and excellent cellular imaging capability. The facile preparation and unique optical features make these CDs potentially useful in numerous applications such as light‐emitting diodes, full‐color displays, and multiplexed (UC)PL bioimaging.  相似文献   

2.
3.
Applications of persistent luminescence phosphors as night or dark‐light vision materials in many technological fields have fueled up a growing demand for rational control over the emission profiles of the phosphors. This, however, remains a daunting challenge. Now a unique strategy is reported to fine‐tune the persistent luminescence by using all‐inorganic CsPbX3 (X=Cl, Br, and I) perovskite quantum dots (PeQDs) as efficient light‐conversion materials. Full‐spectrum persistent luminescence with wavelengths covering the entire visible spectral region is achieved through tailoring of the PeQD band gap, in parallel with narrow bandwidth of PeQDs and highly synchronized afterglow decay owing to the single energy storage source. These findings break through the limitations of traditional afterglow phosphors, thereby opening up opportunities for persistent luminescence materials for applications such as a white‐emitting persistent light source and dark‐light multicolor displays.  相似文献   

4.
5.
The development of organic fluorophores with efficient solid‐state emissions or aggregated‐state emissions in the red to near‐infrared region is still challenging. Reported herein are fluorophores having aggregation‐induced emission ranging from the orange to far red/near‐infrared (FR/NIR) region. The bioimaging performance of the designed fluorophore is shown to have potential as FR/NIR fluorescent probes for biological applications.  相似文献   

6.
High‐efficiency red room‐temperature phosphorescence (RTP) emissions have been achieved by embedding carbon dots (CDs) in crystalline Mn‐containing open‐framework matrices. The rationale of this strategy relies on two factors: 1) the carbon source, which affects the triplet energy levels of the resulting CDs and thus the spectral overlap and 2) the coordination geometry of the Mn atoms in the crystalline frameworks, which determines the crystal‐field splitting and thus the emission spectra. Embedding the carbon dots into a matrix with 6‐coordinate Mn centers resulted in a strong red RTP with a phosphorescence efficiency of up to 9.6 %, which is higher than that of most reported red RTP materials. The composite material has an ultrahigh optical stability in the presence of strong oxidants, various organic solvents, and strong ultraviolet radiation. A green‐yellow RTP composite was also prepared by using a matrix with 4‐coordinate Mn centers and different carbon precursors.  相似文献   

7.
The design and fabrication of quantum dots (QDs) with circularly polarized luminescence (CPL) has been a great challenge in developing chiroptical materials. We herein propose an alternative to the use of chiral capping reagents on QDs for the fabrication of CPL‐active QDs that is based on the supramolecular self‐assembly of achiral QDs with chiral gelators. Full‐color‐tunable CPL‐active QDs were obtained by simple mixing or gelation of a chiral gelator and achiral 3‐mercaptopropionic acid capped QDs. In addition, the handedness of the CPL can be controlled by the supramolecular chirality of the gels. Moreover, QDs with circularly polarized white light emission were fabricated for the first time by tuning the blending ratio of colorful QDs in the gel. The chirality transfer in the co‐assembly of the achiral QDs with the gelator and the spacer effect of the capping reagents on the QD surface are also discussed. This work provides new insight into the design of functional chiroptical materials.  相似文献   

8.
9.
Carbon dots (CDs) have attracted attention in metal‐free afterglow materials, but most CDs were heteroatom‐containing and the afterglow emissions are still limited to the short‐wavelength region. A universal approach to activate the room‐temperature phosphorescence (RTP) of both heteroatom‐free and heteroatom‐containing CDs was developed by one‐step heat treatment of CDs and boric acid (BA). The introduction of an electron‐withdrawing boron atom in composites can greatly reduce the energy gap between the singlet and triplet state; the formed glassy state can effectively protect the excited triplet states of CDs from nonradiative deactivation. A universal host for embedding CDs to achieve long‐lifetime and multi‐color (blue, green, green‐yellow and orange) RTP via a low cost, quick and facile process was developed. Based on their distinctive RTP performances, the applications of these CD‐based RTP materials in information encryption and decryption are also proposed and demonstrated.  相似文献   

10.
Photobleaching is a major challenge in fluorescence microscopy, in particular if high excitation light intensities are used. Signal‐to‐noise and spatial resolution may be compromised, which limits the amount of information that can be extracted from an image. Photobleaching can be bypassed by using exchangeable labels, which transiently bind to and dissociate from a target, thereby replenishing the destroyed labels with intact ones from a reservoir. Here, we demonstrate confocal and STED microscopy with short, fluorophore‐labeled oligonucleotides that transiently bind to complementary oligonucleotides attached to protein‐specific antibodies. The constant exchange of fluorophore labels in DNA‐based STED imaging bypasses photobleaching that occurs with covalent labels. We show that this concept is suitable for targeted, two‐color STED imaging of whole cells.  相似文献   

11.
Compounds displaying delayed fluorescence (DF), from severe concentration quenching, have limited applications as nondoped organic light‐emitting diodes and material sciences. As a nondoped fluorescent emitter, aggregation‐induced emission (AIE) materials show high emission efficiency in their aggregated states. Reported herein is an AIE‐active, DF compound in which the molecular interaction is modulated, thereby promoting triplet harvesting in the solid state with a high photoluminescence quantum yield of 93.3 %, which is the highest quantum yield, to the best of our knowledge, for long‐lifetime emitters. Simultaneously, the compound with asymmetric molecular structure exhibited strong mechanoluminescence (ML) without pretreatment in the solid state, thus exploiting a design and synthetic strategy to integrate the features of DF, AIE, and ML into one compound.  相似文献   

12.
Long‐lifetime room‐temperature phosphorescence (RTP) materials are important for many applications, but they are highly challenging materials owing to the spin‐forbidden nature of triplet exciton transitions. Herein, a facile, quick and gram‐scale method for the preparation of ultralong RTP (URTP) carbon dots (CDs) was developed via microwave‐assisted heating of ethanolamine and phosphoric acid aqueous solution. The CDs exhibit the longest RTP lifetime, 1.46 s (more than 10 s to naked eye) for CDs‐based materials to date. The doping of N and P elements is critical for the URTP which is considered to be favored by a n→π* transition facilitating intersystem crossing (ISC) for effectively populating triplet excitons. In addition, possibilities of formation of hydrogen bonds in the interior of the CDs may also play a significant role in producing RTP. Potential applications of the URTP CDs in the fields of anti‐counterfeiting and information protection are proposed and demonstrated.  相似文献   

13.
14.
15.
16.
17.
Novel conjugated silole‐containing polyfluorenes, with green‐ and red‐emissive siloles on the backbone of the blue‐emissive polyfluorene are synthesized for white light electroluminescence (EL) from a single polymer with simultaneous red, green, and blue (RGB) emission. The CIE coordinates (0.33, 0.36) of the white light EL spectra are very close to that for pure white light (0.33, 0.33). The EL spectra are also quite stable at different applied voltages or brightness. The relative intensities for the three RGB peaks, at 450, 505, and 574 nm, were 0.94, 1, and 0.97, respectively, which demonstrates a balanced simultaneous RGB emission. A maximum luminous efficiency of 2.03 cd · A−1 for a brightness of 344 cd · m−2, and a luminous efficiency of 1.86 cd · A−1 for a more practical brightness of 2 703 cd · m−2, were achieved.

  相似文献   


18.
The first transition‐metal complex‐based two‐photon absorbing luminescence lifetime probes for cellular DNA are presented. This allows cell imaging of DNA free from endogenous fluorophores and potentially facilitates deep tissue imaging. In this initial study, ruthenium(II) luminophores are used as phosphorescent lifetime imaging microscopy (PLIM) probes for nuclear DNA in both live and fixed cells. The DNA‐bound probes display characteristic emission lifetimes of more than 160 ns, while shorter‐lived cytoplasmic emission is also observed. These timescales are orders of magnitude longer than conventional FLIM, leading to previously unattainable levels of sensitivity, and autofluorescence‐free imaging.  相似文献   

19.
20.
The hydroxyl radical (.OH), one of the most reactive and deleterious reactive oxygen species (ROS), has been suggested to play an essential role in many physiological and pathological scenarios. However, a reliable and robust method to detect endogenous .OH is currently lacking owing to its extremely high reactivity and short lifetime. Herein we report a fluorescent probe HKOH‐1 with superior in vitro selectivity and sensitivity towards .OH. With this probe, we have calibrated and quantified the scavenging capacities of a wide range of reported .OH scavengers. Furthermore, HKOH‐1r, which was designed for better cellular uptake and retention, has performed robustly in detection of endogenous .OH generation by both confocal imaging and flow cytometry. Furthermore, this probe has been applied to monitor .OH generation in HeLa cells in response to UV light irradiation. Therefore, HKOH‐1 could be used for elucidating .OH related biological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号