首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Fractional differential equations are solved using the Legendre wavelets. An operational matrix of fractional order integration is derived and is utilized to reduce the fractional differential equations to system of algebraic equations. The illustrative examples are provided to demonstrate the applicability, simplicity of the numerical scheme based on the Legendre.  相似文献   

2.
In this paper, a numerical method is presented to obtain and analyze the behavior of numerical solutions of distributed order fractional differential equations of the general form in the time domain with the Caputo fractional derivative. The suggested method is based on the Müntz–Legendre wavelet approximation. We derive a new operational vector for the Riemann–Liouville fractional integral of the Müntz–Legendre wavelets by using the Laplace transform method. Applying this operational vector and collocation method in our approach, the problem can be reduced to a system of linear and nonlinear algebraic equations. The arising system can be solved by the Newton method. Discussion on the error bound and convergence analysis for the proposed method is presented. Finally, seven test problems are considered to compare our results with other well‐known methods used for solving these problems. The results in the tabulated tables highlighted that the proposed method is an efficient mathematical tool for analyzing distributed order fractional differential equations of the general form.  相似文献   

3.
In this paper, a new computational scheme based on operational matrices (OMs) of two‐dimensional wavelets is proposed for the solution of variable‐order (VO) fractional partial integro‐differential equations (PIDEs). To accomplish this method, first OMs of integration and VO fractional derivative (FD) have been derived using two‐dimensional Legendre wavelets. By implementing two‐dimensional wavelets approximations and the OMs of integration and variable‐order fractional derivative (VO‐FD) along with collocation points, the VO fractional partial PIDEs are reduced into the system of algebraic equations. In addition to this, some useful theorems are discussed to establish the convergence analysis and error estimate of the proposed numerical technique. Furthermore, computational efficiency and applicability are examined through some illustrative examples.  相似文献   

4.
In this article, our main goal is to render an idea to convert a nonlinear weakly singular Volterra integral equation to a non‐singular one by new fractional‐order Legendre functions. The fractional‐order Legendre functions are generated by change of variable on well‐known shifted Legendre polynomials. We consider a general form of singular Volterra integral equation of the second kind. Then the fractional Legendre–Gauss–Lobatto quadratures formula eliminates the singularity of the kernel of the integral equation. Finally, the Legendre pseudospectral method reduces the solution of this problem to the solution of a system of algebraic equations. This method also can be utilized on fractional differential equations as well. The comparison of results of the presented method and other numerical solutions shows the efficiency and accuracy of this method. Also, the obtained maximum error between the results and exact solutions shows that using the present method leads to accurate results and fast convergence for solving nonlinear weakly singular Volterra integral equations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Based on collocation with Haar and Legendre wavelets, two efficient and new numerical methods are being proposed for the numerical solution of elliptic partial differential equations having oscillatory and non-oscillatory behavior. The present methods are developed in two stages. In the initial stage, they are developed for Haar wavelets. In order to obtain higher accuracy, Haar wavelets are replaced by Legendre wavelets at the second stage. A comparative analysis of the performance of Haar wavelets collocation method and Legendre wavelets collocation method is carried out. In addition to this, comparative studies of performance of Legendre wavelets collocation method and quadratic spline collocation method, and meshless methods and Sinc–Galerkin method are also done. The analysis indicates that there is a higher accuracy obtained by Legendre wavelets decomposition, which is in the form of a multi-resolution analysis of the function. The solution is first found on the coarse grid points, and then it is refined by obtaining higher accuracy with help of increasing the level of wavelets. The accurate implementation of the classical numerical methods on Neumann’s boundary conditions has been found to involve some difficulty. It has been shown here that the present methods can be easily implemented on Neumann’s boundary conditions and the results obtained are accurate; the present methods, thus, have a clear advantage over the classical numerical methods. A distinct feature of the proposed methods is their simple applicability for a variety of boundary conditions. Numerical order of convergence of the proposed methods is calculated. The results of numerical tests show better accuracy of the proposed method based on Legendre wavelets for a variety of benchmark problems.  相似文献   

6.
In this article, a new numerical approach has been proposed for solving a class of delay time-fractional partial differential equations. The approximate solutions of these equations are considered as linear combinations of Müntz–Legendre polynomials with unknown coefficients. Operational matrix of fractional differentiation is provided to accelerate computations of the proposed method. Using Padé approximation and two-sided Laplace transformations, the mentioned delay fractional partial differential equations will be transformed to a sequence of fractional partial differential equations without delay. The localization process is based on the space-time collocation in some appropriate points to reduce the fractional partial differential equations into the associated system of algebraic equations which can be solved by some robust iterative solvers. Some numerical examples are also given to confirm the accuracy of the presented numerical scheme. Our results approved decisive preference of the Müntz–Legendre polynomials with respect to the Legendre polynomials.  相似文献   

7.
In this paper, the Vieta–Fibonacci wavelets as a new family of orthonormal wavelets are generated. An operational matrix concerning fractional integration of these wavelets is extracted. A numerical scheme is established based on these wavelets and their fractional integral matrix together with the collocation technique to solve fractional pantograph equations. The presented method reduces solving the problem under study into solving a system of algebraic equations. Several examples are provided to show the accuracy of the method.  相似文献   

8.
This research study deals with the numerical solutions of linear and nonlinear time-fractional subdiffusion equations of distributed order. The main aim of our approach is based on the hybrid of block-pulse functions and shifted Legendre polynomials. We produce a novel and exact operational vector for the fractional Riemann–Liouville integral and use it via the Gauss–Legendre quadrature formula and collocation method. Consequently, we reduce the proposed equations to systems of equations. The convergence and error bounds for the new method are investigated. Six problems are tested to confirm the accuracy of the proposed approach. Comparisons between the obtained numerical results and other existing methods are provided. Numerical experiments illustrate the reliability, applicability, and efficiency of the proposed method.  相似文献   

9.
In this paper, shifted Legendre polynomials will be used for constructing the numerical solution for a class of multiterm variable‐order fractional differential equations. In the proposed method, the shifted Legendre operational matrix of the fractional variable‐order derivatives will be investigated. The fundamental problem is reduced to an algebraic system of equations using the constructed matrix and the collocation technique, which can be solved numerically. The error estimate of the proposed method is investigated. Some numerical examples are presented to prove the applicability, generality, and accuracy of the suggested method.  相似文献   

10.
An effective method based upon Legendre multiwavelets is proposed for the solution of Fredholm weakly singular integro-differential equations. The properties of Legendre multiwavelets are first given and their operational matrices of integral are constructed. These wavelets are utilized to reduce the solution of the given integro-differential equation to the solution of a sparse linear system of algebraic equations. In order to save memory requirement and computational time, a threshold procedure is applied to obtain the solution to this system of algebraic equations. Through numerical examples, performance of the present method is investigated concerning the convergence and the sparseness of the resulted matrix equation.  相似文献   

11.
In this paper we present two new numerically stable methods based on Haar and Legendre wavelets for one- and two-dimensional parabolic partial differential equations (PPDEs). This work is the extension of the earlier work ,  and  from one- and two-dimensional boundary-value problems to one- and two- dimensional PPDEs. Two generic numerical algorithms are derived in two phases. In the first stage a numerical algorithm is derived by using Haar wavelets and then in the second stage Haar wavelets are replaced by Legendre wavelets in quest for better accuracy. In the proposed methods the time derivative is approximated by first order forward difference operator and space derivatives are approximated using Haar (Legendre) wavelets. Improved accuracy is obtained in the form of wavelets decomposition. The solution in this process is first obtained on a coarse grid and then refined towards higher accuracy in the high resolution space. Accuracy wise performance of the Legendre wavelets collocation method (LWCM) is better than the Haar wavelets collocation method (HWCM) for problems having smooth initial data or having no shock phenomena in the solution space. If sharp transitions exists in the solution space or if there is a discontinuity between initial and boundary conditions, LWCM loses its accuracy in such cases, whereas HWCM produces a stable solution in such cases as well. Contrary to the existing methods, the accuracy of both HWCM and LWCM do not degrade in case of Neumann’s boundary conditions. A distinctive feature of the proposed methods is its simple applicability for a variety of boundary conditions. Performances of both HWCM and LWCM are compared with the most recent methods reported in the literature. Numerical tests affirm better accuracy of the proposed methods for a range of benchmark problems.  相似文献   

12.
In this article, we develop a direct solution technique for solving multi-order fractional differential equations (FDEs) with variable coefficients using a quadrature shifted Legendre tau (Q-SLT) method. The spatial approximation is based on shifted Legendre polynomials. A new formula expressing explicitly any fractional-order derivatives of shifted Legendre polynomials of any degree in terms of shifted Legendre polynomials themselves is proved. Extension of the tau method for FDEs with variable coefficients is treated using the shifted Legendre–Gauss–Lobatto quadrature. Numerical results are given to confirm the reliability of the proposed method for some FDEs with variable coefficients.  相似文献   

13.
In this paper, a fast numerical algorithm based on the Taylor wavelets is proposed for finding the numerical solutions of the fractional integro‐differential equations with weakly singular kernels. The properties of Taylor wavelets are given, and the operational matrix of fractional integration is constructed. These wavelets are utilized to reduce the solution of the given fractional integro‐differential equation to the solution of a linear system of algebraic equations. Also, convergence of the proposed method is studied. Illustrative examples are included to demonstrate the validity and applicability of the technique.  相似文献   

14.
In this paper, a numerical solution of fractional partial differential equations (FPDEs) for electromagnetic waves in dielectric media will be discussed. For the solution of FPDEs, we developed a numerical collocation method using an algorithm based on two‐dimensional shifted Legendre polynomials approximation, which is proposed for electromagnetic waves in dielectric media. By implementing the partial Riemann–Liouville fractional derivative operators, two‐dimensional shifted Legendre polynomials approximation and its operational matrix along with collocation method are used to convert FPDEs first into weakly singular fractional partial integro‐differential equations and then converted weakly singular fractional partial integro‐differential equations into system of algebraic equation. Some results concerning the convergence analysis and error analysis are obtained. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we introduce a set of functions called fractional-order Legendre functions (FLFs) to obtain the numerical solution of optimal control problems subject to the linear and nonlinear fractional integro-differential equations. We consider the properties of these functions to construct the operational matrix of the fractional integration. Also, we achieved a general formulation for operational matrix of multiplication of these functions to solve the nonlinear problems for the first time. Then by using these matrices the mentioned fractional optimal control problem is reduced to a system of algebraic equations. In fact the functions of the problem are approximated by fractional-order Legendre functions with unknown coefficients in the constraint equations, performance index and conditions. Thus, a fractional optimal control problem converts to an optimization problem, which can then be solved numerically. The convergence of the method is discussed and finally, some numerical examples are presented to show the efficiency and accuracy of the method.  相似文献   

16.
Klein–Gordon equation models many phenomena in both physics and applied mathematics. In this paper, a coupled method of Laplace transform and Legendre wavelets, named (LLWM), is presented for the approximate solutions of nonlinear Klein–Gordon equations. By employing Laplace operator and Legendre wavelets operational matrices, the Klein–Gordon equation is converted into an algebraic system. Hence, the unknown Legendre wavelets coefficients are calculated in the form of series whose components are computed by applying a recursive relation. Block pulse functions are used to calculate the Legendre wavelets coefficient vectors of nonlinear terms. The convergence analysis of the LLWM is discussed. The results show that LLWM is very effective and easy to implement. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
Solving fractional integral equations by the Haar wavelet method   总被引:1,自引:0,他引:1  
Haar wavelets for the solution of fractional integral equations are applied. Fractional Volterra and Fredholm integral equations are considered. The proposed method also is used for analysing fractional harmonic vibrations. The efficiency of the method is demonstrated by three numerical examples.  相似文献   

18.
A numerical method for solving non‐linear optimal control problems with inequality constraints is presented in this paper. The method is based upon Legendre wavelet approximations. The properties of Legendre wavelets are first presented. The operational matrix of integration and the Gauss method are then utilized to reduce the optimal control problem to the solution of algebraic equations. The inequality constraints are converted to a system of algebraic equalities; these equalities are then collocated at the Gauss nodes. Illustrative examples are included to demonstrate the validity and applicability of the technique. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
The main motive of this article is to study the recently developed Atangana-Baleanu Caputo (ABC) fractional operator that is obtained by replacing the classical singular kernel by Mittag-Leffler kernel in the definition of the fractional differential operator. We investigate a novel numerical method for the nonlinear two-dimensional cable equation in which time-fractional derivative is of Mittag-Leffler kernel type. First, we derive an approximation formula of the fractional-order ABC derivative of a function tk using a numerical integration scheme. Using this approximation formula and some properties of shifted Legendre polynomials, we derived the operational matrix of ABC derivative. In the author of knowledge, this operational matrix of ABC derivative is derived the first time. We have shown the efficiency of this newly derived operational matrix by taking one example. Then we solved a new class of fractional partial differential equations (FPDEs) by the implementation of this ABC operational matrix. The two-dimensional model of the time-fractional model of the cable equation is solved and investigated by this method. We have shown the effectiveness and validity of our proposed method by giving the solution of some numerical examples of the two-dimensional fractional cable equation. We compare our obtained numerical results with the analytical results, and we conclude that our proposed numerical method is feasible and the accuracy can be seen by error tables. We see that the accuracy is so good. This method will be very useful to investigate a different type of model that have Mittag-Leffler fractional derivative.  相似文献   

20.
In this paper, the Legendre spectral collocation method (LSCM) is applied for the solution of the fractional Bratu's equation. It shows the high accuracy and low computational cost of the LSCM compared with some other numerical methods. The fractional Bratu differential equation is transformed into a nonlinear system of algebraic equations for the unknown Legendre coefficients and solved with some spectral collocation methods. Some illustrative examples are also given to show the validity and applicability of this method, and the obtained results are compared with the existing studies to highlight its high efficiency and neglectable error.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号