首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tao Wu  Peter Wriggers 《PAMM》2014,14(1):489-490
In order to numerically describe the phenomena that the debonding at interfacial transition zone (ITZ) between hardened cement paset (HCP) and aggregates could affect thermal conduction and humidity diffusion in the concrete, cohesive zone model (CZM) characterized by traction-separation law combined with micromechanically motivated thermal flux-separation relation and diffusion flux-separation relation is established at ITZ. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
A fracture criterion which takes account of the work done in the deformation of bonds in the end zone of a crack is proposed for analysing the quasistatic growth of a crack with bonds in the end zone. The energy condition that the deformation energy release rate at the crack tip is equal to the rate of deformation energy consumption by the bonds in the end zone of the crack (the first fracture condition) corresponds to the state of limit equilibrium of the crack tip. The rupture of bonds at the trailing edge of the end zone is determined by the condition for their limiting traction (the second fracture condition). Starting from these two conditions, the processes of subcritical and quasistatic crack growth are considered for the case of a rectilinear crack at interface of materials and the two basic fracture parameters, the critical external load and the size of the end zone of the crack in the state of limit equilibrium, are determined. Analytical expressions are obtained for the deformation energy release rate at the crack tip and the rate of deformation energy consumption by the bonds and, also, the dependences of the critical external load and size of the end zone of the crack on the crack length in the case of a rectilinear crack in a homogeneous body with bond tractions which are constant and independent of the external load. The limit cases of a crack which is filled with bonds and a crack with a short end zone are considered.  相似文献   

3.
An analysis of the crack closure and fatigue crack growth rate have been carried out for an infinitely long poled piezoelectric ceramic strip weakened by a straight hair line internal crack. The ceramic under consideration is assumed to be mechanically more brittle. The crack faces are perpendicular to the poled direction of the strip. The crack faces open in Mode-I deformation on account of in-plane tension applied to the edges of the strip together with either an in-plane electric displacement prescribed on edges of the strip or a uniform constant electric field prescribed on its edges. As a result, a yield zone is formed ahead of each tip of the crack. The yield zones developed are then arrested by applying a normal, cohesive, linearly varying yield point-stress to their rims. For each case, the Fourier transform method is used to find a solution. The resulting integral equations are solved numerically. Expressions are derived for the crack opening displacement and the crack growth rate. The variations in these quantities are plotted in relation to the affecting parameters, viz., the strip thickness, the yield zone length, the electric displacement, and material constants. A case study is presented graphically for PZT-4, PZT-5H, and BaTiO3 ceramics. Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 44, No. 5, pp. 647–664, September–October, 2008.  相似文献   

4.
Phase-field models have become popular to simulate cohesive failure problems because of their capability of predicting crack initiation and propagation without additional criteria. In this paper, a new phase-field damage model coupled with general softening laws for cohesive fracture is proposed based on the unified phase-field theory. The commonly used quadratic geometric function in the classical phase-field model is implemented in the proposed model. The modified degradation function related to the failure strength and length scale is used to obtain the length scale insensitive model. Based on the analytical solution of a 1-D case, general softening laws in cohesive zone models can be considered. Parameters in the degradation function can be calibrated according to different softening curves and material properties. Numerical examples show that the results obtained by the proposed model have a good agreement with experimental results and the length scale has a negligible influence on the load-displacement curves in most cases, which cannot be observed in classical phase-field model.  相似文献   

5.
An interface crack with an electrically permeable and mechanically frictionless contact zone in a piezoelectric bimaterial under the action of a remote mixed mode mechanical loading as well as thermal and electrical fields is considered in the first part of this paper. By use of the matrix‐vector representations of thermal, mechanical and electrical fields via sectionally‐holomorphic functions the problems of linear relationships are formulated and solved exactly both for an electrically permeable and an electrically impermeable interface crack. For these cases the transcendental equations and clear analytical formulas are derived for the determination of the contact zone lengths and the associated fracture mechanical parameters. A plane strain problem for a crack with a frictionless contact zone at the leading crack tip extending stationary along an interface of two semi‐infinite anisotropic spaces with a subsonic speed under the action of various loading is considered in the second part of this paper. By introducing of a moving coordinate system connected with the crack tip and by using the formal similarity of static and propagating crack problems the combined Dirichlet‐Riemann boundary value problem is formulated and solved exactly for this case as well and a transcendental equation is obtained for the determination of the real contact zone length. It is found that the increase of the crack speed leads to an increase of the real contact zone length and the correspondent stress intensity factors which increase significantly for a quasi‐Rayleigh wave speed.  相似文献   

6.
1991MRSubjectClassification75M25,45E991IntroductionDuringthelasttenyearsorsojmanyresearchersinappliedmathematicsandmechanicshaveshownasurginginterestinformulatinglinearcrackproblemsillterlllsofsystel-alsofHadamardfillite-part(hypersingular)integralequations,e.g.Ioakimidis['],Lin'kovandMogilevskaya[']andAnal'].Anadvantageofsuchaformulationisthatthe11nkllowllfllnctionsaredirectlyrelatedtothejlllxlpillthedisplacementsacrossoppositeera(:kfaces.Oncetheyaredeterlttillied,crackparaliietersofinter…  相似文献   

7.
采用Bingham弹性-粘塑性模型对反平面剪切动态扩展裂纹尖端的应力应变场进行了渐近分析.给出了适当的位移模式、推导了渐近方程并且给出了数值解.分析和计算表明对于低粘性情况,裂纹尖端场具有对数奇异性.对于高粘性情况,裂纹尖场具有幂奇异性A·D2对于临界情况,两种奇异性可以相互转换.揭示了粘性在裂纹尖端场研究中的重要作用.  相似文献   

8.
An analytical solution of the nonlinear eigenvalue problem arising from the fatigue crack growth problem in a damaged medium in coupled formulation is obtained. The perturbation technique for solving the nonlinear eigenvalue problem is used. The method allows to find the analytical formula expressing the eigenvalue as the function of parameters of the damage evolution law. It is shown that the eigenvalues of the nonlinear eigenvalue problem are fully determined by the exponents of the damage evolution law. In the paper the third-order (four-term) asymptotic expansions of the angular functions determining the stress and continuity fields in the neighborhood of the crack tip are given. The asymptotic expansions of the angular functions permit to find the closed-form solution for the problem considered.  相似文献   

9.
Based on the classical laminated plate theory and the cohesive zone model, a theoretical model for general delamination cracked laminates was established for crack propagation of pure mode Ⅱ ENF specimens. Compared with the conventional beam theory, the proposed model fully considered the softening process of the cohesive zone and introduced the nonlinear behavior of ENF specimens before failure. The predicted failure load is smaller than that under the beam theory and closer to the experimental data in literatures. Compared with the beam theory with only fracture toughness considered, the proposed model can simultaneously analyze the influences of the interface strength, the fracture toughness and the initial interface stiffness on the load-displacement curves in ENF tests. The results show that, the interface strength mainly affects the mechanical behavior of specimens before failure, but has no influence on crack propagation. The fracture toughness is the main parameter affecting crack propagation, and the initial interface stiffness only affects the linear elastic loading stage. The cohesive zone length increases with the fracture toughness and decreases with the interface strength. The effect of the interface strength on the cohesive zone length is more obvious than that of the fracture toughness. When the adhesive zone tip reaches the half length of the specimen, the adhesive zone length will decrease to a certain extent. Copyright ©2022 Applied Mathematics and Mechanics. All rights reserved.  相似文献   

10.
An efficient integral equation formulation for two-dimensional crack problems is proposed with the displacement equation being used on the outer boundary and the traction equation being used on one of the crack faces. Discontinuous quarter point elements are used to correctly model the displacement in the vicinity of crack tips. Using this formulation a general crack problem can be solved in a single-region formulation, and only one of the crack faces needs to be discretised. Once the relative displacements of the cracks are solved numerically, physical quantities of interest, such as crack tip stress intensity factors can be easily obtained. Numerical examples are provided to demonstrate the accuracy and efficiency of the present formulation.  相似文献   

11.
A modified Dugdale model solution is obtained for an elastic-perfectly-plastic plate weakened by one internal and two external straight collinear hairline cracks. The tension applied to the infinite boundary of the plate opens the rims of cracks with forming a plastic zone ahead of each tip of the internal crack and also at each finitely distant tip of the two external cracks. The developed plastic zones are closed by normal cohesive linearly varying yield-point stress distributions applied to their rims. The problem is solved using the complex-variable technique. A case study is carried out to find the load required to prevent the cracks from further growing with respect to affecting parameters. The results obtained are reported graphically and analyzed.  相似文献   

12.
Crack-tip opening displacements are obtained for four collinear straight cracks, weakening an unbounded homogeneous and isotropic elastic-perfectly plastic plate. The cracks are so configured that two symmetrically situated and interiorly lying cracks are of equal-lengths. Other two exteriorly lying, collinear straight cracks (surrounding the interiorly lying straight cracks) are of mutually equal-lengths. Thus an exterior and an interior crack-set are symmetrically oriented with respect to the other interior–exterior collinear cracks-set configuration. Uniform constant load prescribed at remote boundary of the plate, opens the crack in self-similar fashion developing a strip-yield zone ahead each tip of the cracks. It is assumed that the strip-yield zone developed at each of interior tips of an exteriorly and interiorly lying crack-set configuration gets coalesced. The developed yield zones are subjected to normal cohesive yield stress to arrest the crack from further opening. The solution of the problem is obtained by superposing the solutions of the two auxiliary problems, appropriately derived from the given problem. Each of the auxiliary problems, in turn, is solved using complex variable technique. Expressions are derived for quantities of interest viz. crack-tip opening displacement (CTOD), length of each developed yield zone. The effect of applied load and closing load on the parameters CTOD and strip yield zone affecting the crack arrest is presented graphically and concluded.  相似文献   

13.
Jörn Mosler 《PAMM》2010,10(1):311-312
Material failure associated with cracks or shear bands is frequently analyzed by utilizing so-called cohesive models. Such models are based on traction-separation laws. Within such approaches, the stress vector of the considered crack or shear band is related to its conjugate variable being the respective displacement jump (such as the material separation or the crack opening). In the present work, a framework suitable for the analysis of shear bands is discussed. All models belonging to that framework are consistently derived from thermodynamical principles. Hence, the second law of thermodynamics is automatically fulfilled. Furthermore, a variational principle strongly relying on the postulate of maximum dissipation is elaborated leading finally to a variationally consistent implementation. More precisely, all state variables, together with the unknown deformation mapping, follow naturally from minimizing an incrementally defined potential within the presented algorithmic formulation. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
A three-dimensional model for stage I-short crack propagation on a single slip plane is presented. It considers elastic plastic material behaviour by allowing sliding on the active slip plane in a defined slip direction. A crack propagation law based on the crack tip slide displacement is implemented to simulate crack propagation. The model is solved numerically using the dislocation loop technique. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
求解双材料裂纹结构全域应力场的扩展边界元法   总被引:3,自引:3,他引:0       下载免费PDF全文
在线弹性理论中,复合材料裂纹尖端具有多重应力奇异性,常规数值方法不易求解.该文建立的扩展边界元法(XBEM)对围绕尖端区域位移函数采用自尖端径向距离r的渐近级数展开式表达,其幅值系数作为基本未知量,而尖端外部区域采用常规边界元法离散方程.两方程联立求解可获得裂纹结构完整的位移和应力场.对两相材料裂纹结构尖端的两个材料域分别采用合理的应力特征对,然后对其进行计算,通过计算结果的对比分析,表明了扩展边界元法求解两相材料裂纹结构全域应力场的准确性和有效性.  相似文献   

16.
Using a self-similar variables, an asymptotic investigation is carried out into the stress fields and the rates of creep deformations and degree of damage close to the tip of a tensile crack under creep conditions in a coupled (creep - damage) plane formulation of the problem. It is shown that a domain of completely damaged material (DCDM) exists close to the crack tip. The geometry of this domain is determined for different values of the material parameters appearing in the constitutive relations of the Norton power law in the theory of steady-state creep and a kinetic equation which postulates a power law for the damage accumulation. It is shown that, if the boundary condition at the point at infinity is formulated as the condition of asymptotic approximation to the Hutchinson–Rice-Rosengren solution [Hutchinson JW. Singular behaviour at the end of a tensile crack in a hardening material. J Mech Phys Solids 1968;16(1):13–31; Rice JR, Rosengren GF. Plane strain deformation near a crack tip in a power-law hardening material. J Mech Phys Solids. 1968;16(1):1–12], then the boundaries of the DCDM, which are defined by means of binomial and trinomial expansions of the continuity parameter, are substantially different with respect to their dimension and shape. A new asymptotic of the for stress field, which determines the geometry of the DCDM and leads to close configurations of the DCDM constructed using binomial and trinomial asymptotic expansions of the continuity parameter, are established by an asymptotic analysis and a numerical solution of the non-linear eigenvalue problem obtained.  相似文献   

17.
The presence of a crack in a rotor introduces a local flexibility which affects its dynamic response. Moreover, the crack may open and close during the vibration period. The crack status is a function of time and also depends on the rotational speed and the vibration amplitude of the rotor. This nonlinear case is still a challenging research topic especially in the field of closing crack in the rotating shaft. A cohesive zone model is developed in order to analyze the stiffness of a crack in a rotating shaft. The proposed expression will be compared to three different crack models, namely, a breathing crack model, a switching crack model and an open crack model. Moreover, a cohesive law to predict and to analyse the stress at the crack tip is presented. The numerical model is implemented using a finite element formulation. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
The problem of the growth of a vertical hydraulic fracture crack in an unbounded elastic medium under the pressure produced by a viscous incompressible fluid is studied qualitatively and by numerical methods. The fluid motion is described in the approximation of lubrication theory. Near the crack tip a fluid-free domain may exist. To find the crack length, Irwin’s fracture criterion is used. The symmetry groups of the equations describing the hydraulic fracture process are studied for all physically meaningful cases of the degeneration of the problem with respect to the control parameters. The condition of symmetry of the system of equations under the group of scaling and time-shift transformations enables the self-similar variables and the form of the time dependence of the quantities involved in the problem to be found. It is established that at non-zero rock pressure the well-known solution of Spence and Sharp is an asymptotic form of the initial-value problem, whereas the solution of Zheltov and Khristianovich is a limiting self-similar solution of the problem. The problem of the formation of a hydraulic fracture crack taking into account initial data is solved using numerical methods, and the problem of arriving at asymptotic mode is investigated. It is shown that the solution has a self-similar asymptotic form for any initial conditions, and the convergence of the exact solutions to the asymptotic forms is non-uniform in space and time.  相似文献   

19.
We consider the weak solution of the Laplace equation in a planar domain with a straight crack, prescribing a homogeneous Neumann condition on the crack and a nonhomogeneous Dirichlet condition on the rest of the boundary. For every k we express the k-th derivative of the energy with respect to the crack length in terms of a finite number of coefficients of the asymptotic expansion of the solution near the crack tip and of a finite number of other parameters, which only depend on the shape of the domain.  相似文献   

20.
A computational method for arbitrary crack motion through a finite element mesh, termed as the generalized cohesive element technique, is presented. In this method, an element with an internal discontinuity is replaced by two superimposed elements with a combination of original and imaginary nodes. Conventional cohesive zone modeling, limited to crack propagation along the edges of the elements, is extended to incorporate the intra-element mixed-mode crack propagation. Proposed numerical technique has been shown to be quite accurate, robust and mesh insensitive provided the cohesive zone ahead of the crack tip is resolved adequately. A series of numerical examples is presented to demonstrate the validity and applicability of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号