首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Simple cyclic renewable silver amalgam film electrode (Hg(Ag)FE), applied for the determination of gallium(III) using differential pulse anodic stripping voltammetry (DP ASV), is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimised. The calibration graph is linear from 5?nM (0.35?µg?L?1) to 80?nM (5.6?µg?L?1) for a preconcentration time of 60?s, with correlation coefficient of 0.995. For a Hg(Ag)FE with a surface area of 9.9?mm2 the detection limit for a preconcentration time of 120?s is as low as 0.1?µg?L?1. The repeatability of the method at a concentration level of the analyte as low as 3.5?µg?L?1, expressed as RSD is 3.2% (n?=?5). The proposed method was successfully applied by studying the synthetic samples and simultaneously recovery of Ga(III) from spiked aluminium samples.  相似文献   

2.
The renewable mercury film electrode, applied for the determination of papaverine traces using differential pulse adsorptive stripping voltammetry (DP AdSV) is presented. The calibration graph obtained for papaverine is linear from 1.25 nM (0.42 µg L?1) to 95 nM (32.2 µg L?1) for a preconcentration time of 60 s, with correlation coefficient of 0.998. For the renewable mercury electrode (Hg(Ag)FE) with a surface area of 9.1 mm2 the detection limit for a preconcentration time of 60 s is 0.7 nM (0.24 µg L?1). The repeatability of the method at a concentration level of the analyte as low as 17 µg L?1, expressed as RSD is 3.3% (n=5). The proposed method was successfully applied and validated by studying the recovery of papaverine from drugs, urine and synthetic solution.   相似文献   

3.
An easy way to determine norepinephrine (NE) in biological fluid using a platinum ultramicroelectrode array (Pt‐UMEAs) is described. Issues related to UME electrode surface treatment and characterizations are also addressed. At optimized experimental conditions the dynamic concentration range was 1.0 to 10.0 µmol L?1 with a detection limit of 40.5 nmol L?1. The repeatability of current responses for injections of 5 µmol L?1 NE was evaluated to be 4.0 % (n=10). This approach obtained excellent sensitivity, a reliable calibration profile and stable electrochemical response for norepinephrine detection. The content of NE in urine samples without any preconcentration, purification, or pretreatment step, was successfully analyzed by the standard addition method using the Pt‐UMEAs.  相似文献   

4.
A simple, low-cost and sensitive electroanalytical method was developed for the simultaneous determination of p-nitrophenol and o-nitrophenol isomers in water samples at a glassy carbon electrode (CGE) in the presence of cationic surfactant. The electrochemical behavior of p-nitrophenol and o-nitrophenol was studied by cyclic voltammetry (CV) in 0.1?mol L?1 acetate/acetic acid buffer (pH 3.70) in the presence and absence of cetylpyridinium bromide. The resolution of overlapped cathodic peaks potentials (Epc) of isomers was successfully improved in the presence of 100.0?µmol L?1 cetylpyridinium bromide, thus making this approach ideal for the simultaneous determination of isomers. Under the optimized conditions in 0.05?mol L?1 HEPES buffer at pH 7.0 using differential pulse voltammetry (DPV) at a scan rate of 45?mV s?1, pulse amplitude of 220?mV and modulation time of 10?ms, limits of detection 0.59?µmol L?1 for p-nitrophenol and 1.14?µmol L?1 for o-nitrophenol were obtained with linear ranges from 2.0 to 60.0?µmol L?1 and 3.0 to 60.0?µmol L?1, respectively. The intraday precision was assessed as relative standard deviation (%) for 20.0 and 40.0?µmol L?1 concentrations were 4.30% and 2.41% for p-nitrophenol and 4.87% and 2.20% for o-nitrophenol, respectively. The developed method was applied for the determination of the isomers in lake water samples. The accuracy was attested by comparison with high-performance liquid chromatography with diode array detection (HPLC-DAD) as a reference analytical technique. Recovery values ranging from 90.3% to 111.8% also attested to the accuracy of method for analysis of real samples.  相似文献   

5.
The possibility of producing polymer-coated electrodes containing complexing agents capable of collecting metal ions was investigated. The organic ligands 2-mercaptobenzimidazole and 2-mercaptobenzothiazole were used as monomers for electropolymerization on glassy carbon electrodes. The electroanalytical applicability of the modified electrodes was evaluated for Hg2+ ions, by applying a chemical preconcentration step with subsequent measurement by differential pulse voltammetry. The influence of some electropolymerization parameters, such as scan rate, monomer concentration and the number of cyclic scans, on the voltammetric response of mercury(II) was studied. A 5 min preconcentration period allowed the detection of 0.08 mg/L (4.0 × 10−7 mol L−1) mercury.  相似文献   

6.
In this study; a sensitive, selective, and simple electrochemical sensor was developed to determine low concentration pyridoxine (Py) using a phosphorus-doped pencil graphite electrode (P-doped/PGE). Electrode modification was implemented using the chronoamperometry method at +2.0 V constant potential and 100 seconds in 0.1 mol L−1 H3PO4 supporting electrolyte solution. The characterization processes of the P-doped/PGE were carried out using electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscope (AFM) methods. In the concentration study, using the differential pulse voltammetry (DPV) method, a linear calibration plot was acquired in the concentration range of 0.5 to 300 μmol L−1 Py. The limit of quantification (LOQ) and limit of detection (LOD) of the developed method were calculated as 0.219 μmol L−1 and 0.0656 μmol L−1, respectively. Detection of Py has been successfully performed on the P-doped/PGE in the beverage samples. As a result, the method developed has been shown to have fast, low cost, and simple for the sensitive and selective detection of Py as an effective electrode.  相似文献   

7.
The electrochemical behaviour of dopamine (DA) at a cleaned and alumina polished glassy carbon electrode (GCE) was studied using cyclic voltammetry (CV). The CV studies revealed that alumina polished GCE (AGCE) shows an enhanced oxidation peak current response with 217 mV negative potential shift towards DA than that of cleaned GCE. The differential pulse voltammetry result shows that the AGCE detects the DA in the linear concentration ranges from 0.15 to 25.25 µmol L?1. The limit of detection was calculated as 0.046 µmol L?1 with a sensitivity of 3.74 µA µmol L?1 cm?2 for the determination of DA. The fabricated AGCE shows a satisfactory selectivity, practicality along with appreciable repeatability and reproducibility.  相似文献   

8.
《Analytical letters》2012,45(11):2285-2295
Abstract

Multi‐walled carbon nanotubes (MWNTs) were used as sorbent for flow injection (FI) on‐line microcolumn preconcentration coupled with flame atomic absorption spectrometry (FAAS) for determination of trace cadmium and copper in environmental and biological samples. Effective preconcentration of trace cadmium and copper was achieved in a pH range of 4.5–6.5 and 5.0–7.5, respectively. The retained cadmium and copper were efficiently eluted with 0.5 mol L?1 HCl for on‐line FAAS determination. The MWNTs packed microcolumn exhibited fairly fast kinetics for the adsorption of cadmium and copper, permitting the use of high sample flow rates up to at least 7.8 mL min?1 for the FI on‐line microcolumn preconcentration system without loss of the retention efficiency. With a preconcentration time of 60 sec at a sample loading flow rate of 4.3 mL min?1, the enhancement factor was 24 for cadmium and 25 for copper at a sample throughput of 45 h?1. The detection limits (3σ) were 0.30 and 0.11 µg L?1 for Cd and Cu, respectively. The precision (RSD) for 11 replicate measurements was 2.1% at the 10‐µg L?1 Cd level and 2.4% at the 10‐µg L?1 Cu level. The developed method was successfully applied to the determination of trace Cd and Cu in a variety of environmental and biological samples.  相似文献   

9.
A selective and sensitive method for determination of traces of Cr(VI) in the presence of a large excess of Cr(III) by differential pulse catalytic adsorptive stripping voltammetry is presented. For minimization of Cr(III) interference nitrilotriacetic acid was used as a masking agent. The determinations were performed in a flow system. The calibration plot was linear from 1×10−10 to 1×10−8 mol L−1 for accumulation time 60 s. The relative standard deviation for 3×10−9 mol L−1 Cr(VI) was 4.1% (n=5). The detection limit for an accumulation time of 60 s was 4×10−11 mol L−1. The influence of common foreign ions is also presented. The performance of the method was verified by analysis of certified reference material for Cr(VI) and comparing the results of analyses of natural water samples with those obtained by another accepted electrochemical method.  相似文献   

10.
A simple procedure for the simultaneous determination of acetaminophen (AC) and ascorbic acid (AA) by differential pulse voltammetry (DPV) using a carbon nanotube paste electrode exploiting measures in cetylpyridinium bromide (CPB) medium is described. Under the best instrumental parameters of DPV, optimized by means of factorial design, the calibration plots in the range 100.0–700.0 µmol L?1 (r=0.993) and 39.4–146.3 µmol L?1 (r=0.995) with limits of detection of 7.1 and 2.1 µmol L?1, were achieved for AA and AC, respectively. The developed method was successfully applied for the AC and AA determination in pharmaceutical formulations, whose accuracy was attested by comparison with HPLC method.  相似文献   

11.
Robert Piech 《Electroanalysis》2008,20(22):2475-2481
The new cyclic renewable mercury film silver based electrode (Hg(Ag)FE), applied for the determination of selenium(IV) traces in the presence of copper ions using differential pulse cathodic stripping voltammetry (DP CSV) is presented. The preparation of the Hg(Ag)FE is very simple. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 0.5 nM (39 ng L?1) to 100 nM (7.9 μg L?1) for a preconcentration time of 45 s, with correlation coefficient of 0.9995. For a Hg(Ag)FE with a surface area of 8 mm2 the detection limit for a preconcentration time of 90 s is as low as 17 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 2 μg L?1, expressed as RSD is 2.7% (n=7). The proposed method was successfully applied and validated by studying the certified reference material (bovine liver BCR‐185) and simultaneously recovery of Se(IV) from spiked water samples.  相似文献   

12.
A mesoporous zirconia modified carbon paste electrode was developed for electrochemical investigations of methyl parathion (MP, Phen‐NO2). The significant increase of the peak currents and the improvement of the redox peak potential indicate that mesoporous zirconia facilitates the electronic transfer of MP. The oxidation peak current was proportional to the MP concentration in the range from 1.0×10−8 to 1.0×10−5 mol L−1 with a detection limit of 4.6×10−9 mol L−1 (S/N=3) after accumulation under open‐circuit for 210 s. The proposed method was successfully applied to the determination of MP in apple samples.  相似文献   

13.
This paper describes the development of a new electrochemical sensor for 17β-estradiol (E2) determination based on glassy carbon electrode (GCE) modified with molecularly imprinted polymer grafted onto iniferter-multiwall carbon nanotubes surface (MIP-MWCNT) and dihexadecyl-hydrogen-phosphate (DHP). The electrochemical method was based on closed-circuit preconcentration of E2 in 0.1 mol L−1 phosphate buffer (pH 7.0) during 500 s. Upon preconcentration, E2 was determined by differential pulse voltammetry (DPV) exhibiting a limit of detection of 0.01 μmol L−1. The sensor exhibited higher selectivity toward E2 and it was applied for E2 determination in natural water samples, with accuracy attested by HPLC-DAD.  相似文献   

14.
In this work, a solidified floating organic drop microextraction was developed based on a vesicular supramolecular solvent consisting of decanoic acid and quaternary ammonium. The method was used for preconcentration of trace amount of cadmium in different rice samples followed by flow-injection analysis–flame atomic absorption spectrometry. Several parameters affecting the extraction efficiency including pH, concentration of 1-(2-pyridylazo)-2-naphthol as the chelating agent, sample and extraction solvent volume, stirring rate, extraction time, salt effect, and interfering ions were investigated and optimized. Under the optimum conditions, a preconcentration factor of 84 was achieved. LOD and LOQ were found to be 0.09 and 0.31 µg L?1, respectively. The calibration curve was linear within the range of 5.0–700 µg L?1 (r2?>?0.9978). Intra- and inter-day precisions (RSD% n?=?3) were estimated 2.7 and 3.9% at the concentration of 20 µg L?1, respectively. The accuracy of the method was successfully validated by analysis of an SRM-1643f standard reference material. Relative recoveries were achieved within the range of 93–107% elucidating suitability of the method for determination of cadmium in rice samples.  相似文献   

15.
Robert Piech 《Electroanalysis》2009,21(16):1842-1847
A new adsorptive stripping voltammetric method for the determination of trace gallium(III) based on the adsorption of gallium(III)‐catechol complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.14 μg L?1) to 100 nM (6.97 μg L?1) for a preconcentration time of 30 s, with correlation coefficient of 0.9993. For a Hg(Ag)FE with a surface area of 9.7 mm2 the detection limit for a preconcentration time of 90 s is as low as 7 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.05 μg L?1, expressed as RSD is 3.6% (n=5). The proposed method was successfully applied by studying the natural samples and simultaneous recovery of Ga(III) from spiked water and sediment samples.  相似文献   

16.
A simple and fast voltammetric method based on a new electrode composed of carbon paste electrode/bifunctional hybrid ion imprinted polymer (CPE/IIP) was developed for the quantification of Cd2+ in water samples. The voltammetric measurements by Differential Pulse Voltammetry were performed by using CPE containing 11.0 mg of IIP under phosphate buffer solution at concentration 0.1 mol L?1 and pH 6.5. The electrochemical method was carried out by Cd2+ preconcentration at ?1.2 V during 210 s, followed by anodic stripping. The performance of IIP towards Cd2+ determination was evaluated by comparison to non-imprinted polymer, whose detectability of IIP was much higher (45%). The sensitivity of the sensor was found to be 0.0105 µA/µg L?1. The limits of detection and limits of quantification were found to be 4.95 μg L?1 and 16.4 μg L?1, respectively. The developed method was successfully applied to Cd2+ determination in mineral, tap and lake water samples, whose results are in agreement with thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) used as reference analytical technique. According to achieved results, the developed method can be used for routine analysis of quality control of water samples from different sources.  相似文献   

17.
Robert Piech 《Electroanalysis》2010,22(16):1851-1856
A new adsorptive stripping voltammetric method for the determination of trace scandium(III) based on the adsorption of scandium(III)‐mordant blue 9 complex on the cyclic renewable mercury film silver based electrode (Hg(Ag)FE) is presented. The effects of various factors such as: preconcentration potential and time, pulse height, step potential and supporting electrolyte composition are optimized. The calibration graph is linear from 2 nM (0.09 μg L?1) to 90 nM (4 μg L?1) for a preconcentration time of 45 s, with correlation coefficient of 0.9995. For a Hg(Ag)FE with a surface area of 7.9 mm2 the detection limit for a preconcentration time of 90 s is as low as 5 ng L?1. The repeatability of the method at a concentration level of the analyte as low as 0.2 μg L?1, expressed as RSD is 1.9 % (n=5). The proposed method was successfully applied and validated by studying the certified reference material (CRM 320 – river sediment) and natural samples with simultaneous recovery of Sc(III) from spiked water and sediment samples.  相似文献   

18.
A simple and sensitive method is presented for solid phase extraction (SPE) and preconcentration of trace quantities of beryllium using octadecyl silica gel modifed with aurin tricarboxylic acid (aluminon). Beryllium is then determined by flame atomic absorption spectroscopy. Parameters affecting SPE such as pH, sample solution and eluent flow rate, type, concentration and volume of eluent, interfering ions and breakthrough volume, were investigated. Under optimal conditions, the beryllium ions were retained on the sorbent at pH 6–6.7, while 3.0 mL of 0.05 mol L?1 HNO3 is sufficient to elute the ions. The limit of detection (LOD) based on 3σ was 0.8 µg L?1 for 250 mL sample solution and 5 mL 0.05 mol L?1 HNO3 as eluent. The LOD can reach 0.1 µg L?1 for 1 L sample solution and 3 mL of 0.05 mol L?1 HNO3. The accuracy and precision (RSD %) of the method is >90% and <10%, respectively. The method was applied to the determination of beryllium in aqueous samples.  相似文献   

19.
《Analytical letters》2012,45(12):1846-1856
A preconcentration methodology utilizing the cloud point phenomenon is described for the determination of copper by flame atomic absorption spectrometry. The reagent Sulfathiazolylazo resorsin was used as a complexing agent. The preconcentration factor of 25-fold was obtained. The calibration curve is linear in the range of 4–400 µ g L?1 with a limit of detection of 0.64 µ g L?1. The relative standard deviation (n = 5, 12 µ g L?1) was 3.5%. The cloud point is formed in the presence of phenol at room temperature. The method was successfully applied to the determination of copper in water samples and a standard reference material.  相似文献   

20.
A liquid-phase microextraction (LPME) method was employed for preconcentration of selenium as piazselenol complex in aqueous samples. The samples reacted with o-phenylenediamine in 0.1?M HCl at 90°C for 15?min, and then LPME was performed. A microdrop of carbon tetrachloride was applied as the extracting solvent. After extraction, the microdrop was introduced directly into the injection port of gas chromatography for analysis. Several important extraction parameters such as the type of organic solvent, sample and organic drop volumes, salt concentration, stirring rate, and exposure time were controlled and optimized. In the proposed LPME, the extraction was achieved by suspending a 3?µL carbon tetrachloride drop from the tip of a microsyringe immersed in 12.5?mL of aqueous solution. Under optimized conditions, a dynamic linear range was obtained in the range of 20–1000?µg?L?1. The preconcentration factor and the limit of detection of selenium in this method were 91 and 0.9?µg?L?1, respectively. The optimized procedure was successfully applied to the extraction and determination of selenium in different types of real samples. The relative standard deviations for the spiking levels of 50–100?µg?L?1 in the real samples were in the range of 3.2–6.1%, and the relative errors were located in the range of ?5.4 to 5%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号