首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper investigates the design of an output feedback adaptive stabilization controller for a nonholonomic chained system with strong nonlinear drifts, including modeled nonlinear dynamics, unmodeled dynamics, and dynamics modeled with unknown parameters. Also the virtual control directions of the system are unknown. The purpose is to design a nonlinear output feedback switching controller such that the closed loop system is globally asymptotically stable. A novel observer and estimator are introduced for states and parameter estimates, respectively. A constructive procedure of design for an output feedback adaptive controller is given, by using the integrator backstepping approach and based on the proposed observer and parameter estimator. An example is given to show the effectiveness of the proposed scheme.  相似文献   

2.
In this paper, the boundary output feedback stabilization problem is addressed for a class of coupled nonlinear parabolic systems. An output feedback controller is presented by introducing a Luenberger‐type observer based on the measured outputs. To determine observer gains, a backstepping transform is introduced by choosing a suitable target system with nonlinearity. Furthermore, based on the state observer, a backstepping boundary control scheme is presented. With rigorous analysis, it is proved that the states of nonlinear closed‐loop system including state estimation and estimation error of plant system are locally exponentially stable in the L2norm. Finally, a numerical example is proposed to illustrate the effectiveness of the presented scheme.  相似文献   

3.
In this paper, an adaptive fuzzy output feedback approach is proposed for a single-link robotic manipulator coupled to a brushed direct current (DC) motor with a nonrigid joint. The controller is designed to compensate for the nonlinear dynamics associated with the mechanical subsystem and the electrical subsystems while only requiring the measurements of link position. Using fuzzy logic systems to approximate the unknown nonlinearities, an adaptive fuzzy filter observer is designed to estimate the immeasurable states. By combining the adaptive backstepping and dynamic surface control (DSC) techniques, an adaptive fuzzy output feedback control approach is developed. Stability proof of the overall closed-loop system is given via the Lyapunov direct method. Three key advantages of our scheme are as follows: (i) the proposed adaptive fuzzy control approach does not require that all the states of the system be measured directly, (ii) the proposed control approach can solve the control problem of robotic manipulators with unknown nonlinear uncertainties, and (iii) the problem of “explosion of complexity” existing in the conventional backstepping control methods is avoided. The detailed simulation results are provided to demonstrate the effectiveness of the proposed controller.  相似文献   

4.
In this paper, a nonlinear adaptive output feedback robust controller is proposed for motion control of hydraulic servo systems in the presence of largely unknown matched and mismatched modeling uncertainties. Different from the existing control technologies, the presented hydraulic closed-loop controller which can deal with strong matched and mismatched parametric uncertainties is synthesized via the backstepping technique. Specially, a nonlinear disturbance observer which can estimate the largely mismatched disturbance is integrated into the design of the linear extended state observer to obtain estimation of unmeasurable system states, uncertain parameters and strong disturbances simultaneously. In addition, the projection-type adaptive law is synthesized into the design of the resulting controller. More importantly, the global stability of the whole closed-loop system is strictly guaranteed by the Lyapunov analysis. Furthermore, the effectiveness and practicability of the presented control strategy have been demonstrated by comparative experiments under different working conditions.  相似文献   

5.
This paper adopts some alternative strategies to design a nonlinear controller for double electrostatically actuated microplates. The novel design is carried out to solve the singularity problem reported in many articles due to the use of the Taylor expansion to simplify the electrostatic force. The nonlinear governing partial differential equation is converted to the modal equation using the Galerkin method. Then, based on the Lyapunov stability criterion, a fuzzy backstepping controller facilitated by prescribed performance functions is applied to the non-affine system to extend the travel range beyond the pull-in region and capture the structural and nonstructural uncertainties that exist in the practical systems. The present work also aims to bring satisfactory transient and steady-state performance indices to the system. Moreover, unknown time-varying delays as the indispensable part of practical systems are considered in the proposed control scheme to suppress the delays occurring in the measurement of the states by constructing Lyapunov–Krasovskii function. The accuracy of the modal equation in both the static and dynamic analysis is verified through a meshless method as a direct solution of the partial differential equation. The proposed controller guarantees that all the closed-loop signals are semi-globally, uniformly ultimately bounded, and the error evolves within the decaying prescribed bounds. Finally, the proposed controller demonstrates its feasibility to extend the travel range within and beyond the pull-in range despite the unknown uncertainties and time-varying delays which exist in the system.  相似文献   

6.
A new output feedback adaptive control scheme for multi-input and multi-output (MIMO) nonlinear systems is presented based on the high frequency gain matrix factorization and the backstepping approach with vector form. The only required prior knowledge about the high frequency gain matrix of the linear part of the system is the signs of its leading principal minors. The proposed controller is a dynamic one that only needs the measurement of the system output, and the observer and the filters are introduced in order to construct a virtual estimate of the unmeasured system states. The global stability of the closed-loop systems is guaranteed through this control scheme, and the tracking error converges to zero. Finally, the numerical simulation results illustrate the effectiveness of the proposed scheme.  相似文献   

7.
The output feedback regulation problem is considered for a class of nonlinear systems with integral input-to-state stable (iISS) inverse dynamics and unknown control direction. The system output together with the complete unmeasured state components appears in the system uncertainties. A systematic output feedback control scheme is presented with the help of a dynamic observer, whose gain comes from an off-line time-varying Riccati matrix differential equation. The proposed scheme can be applied to the analysis of the speed tracking control of a fan. The simulation results demonstrate the validity of the presented algorithm.  相似文献   

8.
In this paper, we consider stabilization of a 1‐dimensional wave equation with variable coefficient where non‐collocated boundary observation suffers from an arbitrary time delay. Since input and output are non‐collocated with each other, it is more complex to design the observer system. After showing well‐posedness of the open‐loop system, the observer and predictor systems are constructed to give the estimated state feedback controller. Different from the partial differential equation with constant coefficients, the variable coefficient causes mathematical difficulties of the stabilization problem. By the approach of Riesz basis property, it is shown that the closed‐loop system is stable exponentially. Numerical simulations demonstrate the effect of the stable controller. This paper is devoted to the wave equation with variable coefficients generalized of that with constant coefficients for delayed observation and non‐collocated control.  相似文献   

9.
针对一类非严格反馈的时滞非线性系统, 研究了一类基于观测器的自适应神经网络控制问题.针对系统中存在未知状态变量的问题, 设计了一个状态观测器.利用反步法和径向基神经网络的逼近特性, 提出了一种自适应神经网络输出反馈控制方法.所设计的控制器保证了闭环系统中所有信号的半全局一致有界性.最后, 通过仿真验证了所提控制方法的有效性.  相似文献   

10.
The output regulation problem is solved for an ODE plant driven by a parabolic actuator with spatially varying coefficients. Applying the backstepping transformation to the actuator allows the solution of the regulator equations in closed-form and thus the formulation of the solvability condition. An output feedback regulator is obtained by designing a disturbance observer using delayed measurement and a reference observer that both achieve finite-time convergence. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
针对一类状态不完全可测的不确定非线性系统,研究了带有执行器故障的容错控制问题.采用 T-S模型对非线性系统进行模糊建模,利用并行分布补偿(PDC)算法设计了状态现潮器和基于状态现 潮器的客错控制,给出了保证该模糊容错控制系统稳定的充分条件.根据李雅普诺夫稳定性理论和线性 矩阵不等式(LMI),证明了所提出的模糊容错控制方法不但使得模糊控制系统渐近稳定,而且能够取得 H∞性能指标.计算机仿真结果进一步验证了所提出方法的正确性.  相似文献   

12.
This paper investigates the problem of dynamic output feedback fault tolerant controller design for discrete-time switched systems with actuator fault. By using reduced-order observer method and switched Lyapunov function technique, a fault estimation algorithm is achieved for the discrete-time switched system with actuator fault. Then based on the obtained online fault estimation information, a switched dynamic output feedback fault tolerant controller is employed to compensate for the effect of faults by stabilizing the closed-loop systems. Finally, an example is proposed to illustrate the obtained results.  相似文献   

13.
In recent years, backstepping method has been developed in the field of nonlinear control, such as controller, observer and output regulation. In this paper, an effective backstepping design is applied to chaos synchronization. There are some advantages in this method for synchronizing chaotic systems, such as (a) the synchronization error is exponential convergent; (b) only one variable information of the master system is needed; (c) it presents a systematic procedure for selecting a proper controller. Numerical simulations for the Chua's circuit and the Rössler system demonstrate that this method is very effective.  相似文献   

14.
研究基于输出反馈的一类新的大型互联非线性不确定系统的鲁棒全局指数稳定问题,通过构造每个子系统收敛的状态观测器,并对观测器的状态作线性变换,得到鲁棒分散输出反馈控制器.当该反馈控制律作用于该系统时,闭环系统是全局指数稳定的.  相似文献   

15.
Nan Wang  Jinyong Yu  Weiyang Lin 《Complexity》2016,21(Z2):191-200
This article deals with the positioning control problem via the output feedback scheme for a linear actuator with nonlinear disturbances. In this study, the proposed controller accounts for not only the nonlinear friction, force ripple, and external disturbance but also the input saturation problem. In detail, the energy consumption for conquering friction and disturbance rejection is estimated and used as compensation based on the hybrid controller including and sliding‐mode‐based adaptive algorithms, which ensures the tracking performance and robustness of electromechanical servo system. Moreover, to confront the input saturation, a saturation observer and an anti‐windup controller are designed. The global robustness of the controller is guaranteed by an output feedback robust law. Theoretically, the designed controller can guarantee a favorable tracking performance in the presence of various disturbance forces and input saturation, which is essential for high accuracy motion plant in industrial application. The simulation results verify the robustness and effectiveness for the motion system with the proposed control strategy under various operation conditions. © 2016 Wiley Periodicals, Inc. Complexity 21: 191–200, 2016  相似文献   

16.
考虑带有输入时滞的线性系统的镇定问题.通过把时滞写成一阶传播方程,带有输入时滞的镇定问题转化为常微分方程和一阶双曲方程组成的串联系统的镇定问题.与现有Backstepping方法不同,文章给出了新的变换,其核函数是一阶倒向向量值常微分方程,这使得控制的设计更加简单.文章给出了新的状态反馈控制器,并证明了闭环系统解的适定性和指数稳定性.数值模拟说明,给出的方法是非常有效的.  相似文献   

17.
本文研究基于输出反馈的一类大型互联Holder连续非线性系统的全局实际镇定问题.通过构造每个子系统的状态观测器,并对观测器的状态作线性变换,得到分散输出反馈控制器.当输出反馈控制律作用于该系统时,闭环系统是全局实际稳定的.  相似文献   

18.
主要讨论了一类具有不确定参数的非线性系统的通过适应输出反馈达到干扰衰减的问题.通过构造降维观测器,利用Backstepping方法设计输出反馈控制器,使闭环系统具有不确定参数的标准的增益问题可解,并使系统达到内稳定.  相似文献   

19.
The pressure information of a hydraulic actuator plays a key role in modern vehicle control and fault diagnosis. The difficulty in measuring pressure directly naturally motivates such an indirect approach as an observer whose accuracy depends heavily upon the availability of a high fidelity model of a hydraulic actuator. Notwithstanding its success in understanding the dynamics of the first principle model of a hydraulic actuator, it is not suited to controller/observer design due to its complexity. This paper presents an alternative to the first principle modeling methodology: an empirical approach to hydraulic actuator modeling. Linear and nonlinear system identification techniques are applied to obtain low-order models of a hydraulic actuator. Experimental results show how the empirical models reproduce the key features of a hydraulic actuator with sufficient accuracy.  相似文献   

20.
A global adaptive output feedback control strategy is presented for a class of nonholonomic systems in generalized chained form with drift nonlinearity and unknown virtual control parameters. The purpose is to design a nonlinear output feedback switching controller such that the closed-loop system is globally asymptotically stable. By using the input-state scaling technique and an integrator back-stepping approach, an output feedback controller is given. A filter of observer gain is introduced for state and parameter estimates. Meanwhile, in order to avoid the over-parameters, a tuning function technique is utilized. A novel switching control strategy based on the output measurement of the first subsystem rather than time is used to overcome the uncontrollability of the x0-subsystem in the origin. The proposed controller can guarantee that all the system states globally converge to the origin, while other signals maintain bounded. The numerical simulation testifies the effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号