共查询到20条相似文献,搜索用时 15 毫秒
1.
Heng Zhang Liangliang Chang Na Wang Xiaopeng Xuan 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(10):1173-1176
The title compound, C6H9N2O2+·Cl−·C6H8N2O2·H2O, contains one 2‐(3‐methyl‐1H‐imidazol‐3‐ium‐1‐yl)acetate inner salt molecule, one 1‐carboxymethyl‐3‐methyl‐1H‐imidazol‐3‐ium cation, one chloride ion and one water molecule. In the extended structure, chloride anions and water molecules are linked via O—H...Cl hydrogen bonds, forming an infinite one‐dimensional chain. The chloride anions are also linked by two weak C—H...Cl interactions to neighbouring methylene groups and imidazole rings. Two imidazolium moieties form a homoconjugated cation through a strong and asymmetric O—H...O hydrogen bond of 2.472 (2) Å. The IR spectrum shows a continuous D‐type absorption in the region below 1300 cm−1 and is different to that of 1‐carboxymethyl‐3‐methylimidazolium chloride [Xuan, Wang & Xue (2012). Spectrochim. Acta Part A, 96 , 436–443]. 相似文献
2.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(5):599-603
In recent years, N‐heterocyclic carboxylate ligands have attracted much interest in the preparation of new coordination polymers since they contain N‐atom donors, as well as O‐atom donors, and have a rich variety of coordination modes which can lead to polymers with intriguing structures and interesting properties. A new two‐dimensional coordination polymer, namely poly[[μ3‐2,2′‐(1,2‐phenylene)bis(4‐carboxy‐1H‐imidazole‐5‐carboxylato)‐κ6O4,N3,N3′,O4′:O5:O5′]manganese(II)], [Mn(C16H8N4O8)]n or [Mn(H4Phbidc)]n, has been synthesized by the reaction of Mn(OAc)2·4H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, each MnII ion is six‐coordinated by two N atoms from one H4Phbidc2− ligand and by four O atoms from three H4Phbidc2− ligands, forming a significantly distorted octahedral MnN2O4 coordination geometry. The MnII ions are linked by hexadentate H4Phbidc2− ligands, leading to a two‐dimensional structure parallel to the ac plane. In the crystal, adjacent layers are further connected by N—H…O hydrogen bonds, forming a three‐dimensional structure in the solid state. 相似文献
3.
《Acta Crystallographica. Section C, Structural Chemistry》2018,74(10):1128-1132
Imidazole‐4,5‐dicarboxylic acid (H3IDC) and its derivatives are widely used in the preparation of new coordination polymers owing to their versatile bridging coordination modes and potential hydrogen‐bonding donors and acceptors. A new one‐dimensional coordination polymer, namely catena‐poly[[diaquacadmium(II)]‐μ3‐2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylato)], [Cd(C16H6N4O8)0.5(H2O)2]n or [Cd(H2Phbidc)1/2(H2O)2]n, has been synthesized by the reaction of Cd(OAc)2·2H2O (OAc is acetate) with 2,2′‐(1,2‐phenylene)bis(1H‐imidazole‐4,5‐dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, one type of Cd ion (Cd1) is six‐coordinated by two N atoms and two O atoms from one H2Phbidc4− ligand and by two O atoms from two water molecules, forming a significantly distorted octahedral CdN2O4 coordination geometry. In contrast, the other type of Cd ion (Cd2) is six‐coordinated by two N atoms and two O atoms from two symmetry‐related H2Phbidc4− ligands and by two O atoms from two symmetry‐related water molecules, leading to a more regular octahedral coordination geometry. The Cd1 and Cd2 ions are linked by H2Phbidc4− ligands into a one‐dimensional chain which runs parallel to the b axis. In the crystal, the one‐dimensional chains are connected through hydrogen bonds, generating a two‐dimensional layered structure parallel to the ab plane. Adjacent layers are further linked by hydrogen bonds, forming a three‐dimensional structure in the solid state. 相似文献
4.
Shaaban K. Mohamed Sabry H. H. Younes Eman M. M. Abdel‐Raheem Joel T. Mague Mehmet Akkurt Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2015,71(11):959-964
The wide diversity of applications of thiosemicarbazones and bis(thiosemicarbazones) has seen them used as anticancer and antitubercular agents, and as ligands in metal complexes designed to act as site‐specific radiopharmaceuticals. Molecules of 1,1′‐({[(ethane‐1,2‐diyl)dioxy](1,2‐phenylene)}bis(methanylylidene))bis(thiosemicarbazide) {alternative name: 2,2′‐[ethane‐1,2‐diylbis(oxy)]dibenzaldehyde bis(thiosemicarbazide)}, C18H20N6O2S2, (I), lie across twofold rotation axes in the space group C2/c, with an O—C—C—O torsion angle of −59.62 (13)° and a trans‐planar arrangement of the thiosemicarbazide fragments relative to the adjacent aryl rings. The molecules of (I) are linked by N—H...S hydrogen bonds to form sheets containing R24(38) rings and two types of R22(8) ring. In the N,N‐dimethylformamide disolvate, C18H20N6O2S2·2C3H7NO, (II), the independent molecular components all lie in general positions, but one of the solvent molecules is disordered over two sets of atomic sites having occupancies of 0.839 (3) and 0.161 (3). The O—C—C—O torsion angle in the ArOCH2CH2OAr component is −75.91 (14)° and the independent thiosemicarbazide fragments both adopt a cis‐planar arrangement relative to the adjacent aryl rings. The ArOCH2CH2OAr components in (II) are linked by N—H...S hydrogen bonds to form deeply puckered sheets containing R22(8), R24(8) and two types of R22(38) rings, and which contain cavities which accommodate all of the solvent molecules in the interior of the sheets. Comparisons are made with some related compounds. 相似文献
5.
Shan‐Shan Liu Shuai Yuan Hai‐Feng Lu Meng‐Zhen Xu Di Sun 《Acta Crystallographica. Section C, Structural Chemistry》2013,69(6):610-612
The cation‐templated self‐assembly of 1,4‐bis(2‐methyl‐1H‐imidazol‐1‐yl)butane (bmimb) with CuSCN gives rise to a novel two‐dimensional network, namely catena‐poly[2,2′‐dimethyl‐1,1′‐(butane‐1,4‐diyl)bis(1H‐imidazol‐3‐ium) [tetra‐μ2‐thiocyanato‐κ4S:S;κ4S:N‐dicopper(I)]], {(C12H20N4)[Cu2(NCS)4]}n. The CuI cation is four‐coordinated by one N and three S atoms, giving a tetrahedral geometry. One of the two crystallographically independent SCN− anions acts as a μ2‐S:S bridge, binding a pair of CuI cations into a centrosymmetric [Cu2(NCS)2] subunit, which is further extended into a two‐dimensional 44‐sql net by another kind of SCN− anion with an end‐to‐end μ2‐S:N coordination mode. Interestingly, each H2bmimb dication, lying on an inversion centre, threads through one of the windows of the two‐dimensional 44‐sql net, giving a pseudorotaxane‐like structure. The two‐dimensional 44‐sql networks are packed into the resultant three‐dimensional supramolecular framework through bmimb–SCN N—H...N hydrogen bonds. 相似文献
6.
Wyatt Cole Stephanie L. Hemmingson Audrey C. Eisenberg Catherine A. Ulman Joseph M. Tanski Yutan D. Y. L. Getzler 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(1):65-69
Four 2,2′‐bisindolylmethanes (BIMs), a useful class of polyindolyl species joined to a central carbon, were synthesized using salicylaldehyde derivatives and simple acid catalysis; these are 2‐[bis(3‐methyl‐1H‐indol‐2‐yl)methyl]‐6‐methylphenol, (IIa), 2‐[bis(3‐methyl‐1H‐indol‐2‐yl)methyl]‐4,6‐dichlorophenol, (IIb), 2‐[bis(3‐methyl‐1H‐indol‐2‐yl)methyl]‐4‐nitrophenol, (IIc), and 2‐[bis(3‐methyl‐1H‐indol‐2‐yl)methyl]‐4,6‐di‐tert‐butylphenol, (IId). BIMs (IIa) and (IIb) were characterized crystallographically as the dimethyl sulfoxide (DMSO) disolvates, i.e. C26H24N2O·2C2H6OS and C25H20Cl2N2O·2C2H6OS, respectively. Both form strikingly similar one‐dimensional hydrogen‐bonding chain motifs with the DMSO solvent molecules. BIM (IIa) packs into double layers of chains whose orientations alternate every double layer, while (IIb) forms more simply packed chains along the a axis. BIM (IIa) has a remarkably long c axis. 相似文献
7.
Qingjian Liu Daqing Shi Chuanli Ma Fengmei Pan Rongjun Qu Kaibei Yu Jianhua Xu 《Acta Crystallographica. Section C, Structural Chemistry》2003,59(4):o219-o220
In the title compound, C16H12N2S4, which is the result of the S‐alkylation reaction of 2‐mercaptobenzothiazole with ethylene dibromide, the planes of the two benzothiazole moieties form a dihedral angle of 3.84 (14)°. The bridging chain moiety, –SCH2CH2S–, adopts an antiperiplanar conformation. There are intermolecular S⃛S non‐bonded contacts of 3.6471 (9) Å, which stabilize the crystal packing. 相似文献
8.
Jiajia Guo Wenli Cao Shuailei Li Kanghua Miao Jirong Song Jie Huang 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(2):166-169
The crystal engineering of coordination polymers has aroused interest due to their structural versatility, unique properties and applications in different areas of science. The selection of appropriate ligands as building blocks is critical in order to afford a range of topologies. Alkali metal cations are known for their mainly ionic chemistry in aqueous media. Their coordination number varies depending on the size of the binding partners, and on the electrostatic interaction between the ligands and the metal ions. The two‐dimensional coordination polymer poly[tetra‐μ‐aqua‐[μ4‐4,4′‐(diazenediyl)bis(5‐oxo‐1H‐1,2,4‐triazolido)]disodium(I)], [Na2(C4H2N8O2)(H2O)4]n, (I), was synthesized from 4‐amino‐1H‐1,2,4‐triazol‐5(4H)‐one (ATO) and its single‐crystal structure determined. The mid‐point of the imino N=N bond of the 4,4′‐(diazenediyl)bis(5‐oxo‐1H‐1,2,4‐triazolide) (ZTO2−) ligand is located on an inversion centre. The asymmetric unit consists of one Na+ cation, half a bridging ZTO2− ligand and two bridging water ligands. Each Na+ cation is coordinated in a trigonal antiprismatic fashion by six O atoms, i.e. two from two ZTO2− ligands and the remaining four from bridging water ligands. The Na+ cation is located near a glide plane, thus the two bridging O atoms from the two coordinating ZTO2− ligands are on adjacent apices of the trigonal antiprism, rather than being in an anti configuration. All water and ZTO2− ligands act as bridging ligands between metal centres. Each Na+ metal centre is bridged to a neigbouring Na+ cation by two water molecules to give a one‐dimensional [Na(H2O)2]n chain. The organic ZTO2− ligand, an O atom of which also bridges the same pair of Na+ cations, then crosslinks these [Na(H2O)2]n chains to form two‐dimensional sheets. The two‐dimensional sheets are further connected by intermolecular hydrogen bonds, giving rise to a stabile hydrogen‐bonded network. 相似文献
9.
The title coordination polymer, poly[[aqua(μ5‐1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dicadmium(II)] dihydrate], {[Cd2(C16H6O8)(C12H10N4)2(H2O)]·2H2O}n, was crystallized from a mixture of 1,1′‐biphenyl‐2,2′,5,5′‐tetracarboxylic acid (H4bpta), 1,4‐bis(1H‐imidazol‐1‐yl)benzene (1,4‐bib) and cadmium nitrate in water–dimethylformamide. The crystal structure consists of two crystallographically independent CdII cations, with one of the CdII cations possessing a slightly distorted pentagonal bipyramidal geometry. The second CdII centre is coordinated by carboxylate O atoms and imidazole N atoms from two separate 1,4‐bib ligands, displaying a distorted octahedral CdN2O4 geometry. The completely deprotonated bpta4− ligand, exhibiting a new coordination mode, bridges five CdII cations to form one‐dimensional chains viaμ3‐η1:η2:η1:η2 and μ2‐η1:η1:η0:η0 modes, and these are further linked by 1,4‐bib ligands to form a three‐dimensional framework with a (42.64)(4.62)(43.65.72) topology. The structure of the coordination polymer is reinforced by intermolecular hydrogen bonding between carboxylate O atoms, aqua ligands and crystallization water molecules. The solid‐state photoluminescence properties were investigated and the complex might be a candidate for a thermally stable and solvent‐resistant blue fluorescent material. 相似文献
10.
Mwaffak Rukiah Mahmoud M. Al-Ktaifani Mohammad K. Sabra 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(2):112-118
The design of new organic–inorganic hybrid ionic materials is of interest for various applications, particularly in the areas of crystal engineering, supramolecular chemistry and materials science. The monohalogenated intermediates 1‐(2‐chloroethyl)pyridinium chloride, C5H5NCH2CH2Cl+·Cl−, (I′), and 1‐(2‐bromoethyl)pyridinium bromide, C5H5NCH2CH2Br+·Br−, (II′), and the ionic disubstituted products 1,1′‐(ethylene‐1,2‐diyl)dipyridinium dichloride dihydrate, C12H14N22+·2Cl−·2H2O, (I), and 1,1′‐(ethylene‐1,2‐diyl)dipyridinium dibromide, C12H14N22+·2Br−, (II), have been isolated as powders from the reactions of pyridine with the appropriate 1,2‐dihaloethanes. The monohalogenated intermediates (I′) and (II′) were characterized by multinuclear NMR spectroscopy, while (I) and (II) were structurally characterized using powder X‐ray diffraction. Both (I) and (II) crystallize with half the empirical formula in the asymmetric unit in the triclinic space group P. The organic 1,1′‐(ethylene‐1,2‐diyl)dipyridinium dications, which display approximate C2h symmetry in both structures, are situated on inversion centres. The components in (I) are linked via intermolecular O—H…Cl, C—H…Cl and C—H…O hydrogen bonds into a three‐dimensional framework, while for (II), they are connected via weak intermolecular C—H…Br hydrogen bonds into one‐dimensional chains in the [110] direction. The nucleophilic substitution reactions of 1,2‐dichloroethane and 1,2‐dibromoethane with pyridine have been investigated by ab initio quantum chemical calculations using the 6–31G** basis. In both cases, the reactions occur in two exothermic stages involving consecutive SN2 nucleophilic substitutions. The isolation of the monosubstituted intermediate in each case is strong evidence that the second step is not fast relative to the first. 相似文献
11.
Shaaban K. Mohamed Sabry H. H. Younes Eman M. M. Abdel‐Raheem Peter N. Horton Mehmet Akkurt Christopher Glidewell 《Acta Crystallographica. Section C, Structural Chemistry》2016,72(1):57-62
Pyrazolidine‐3,5‐diones and their derivatives exhibit a wide range of biological activities. Seeking to explore the effect of combining a hydrocarbyl ring substituent, as present in sulfinpyrazone (used to treat gout), with a chlorinated aryl ring, as present in muzolimine (a diuretic), we explored the reaction between 1‐phenylpyrazolidine‐3,5‐dione and 4‐chlorobenzaldehyde under mildly basic conditions in the expectation of producing the simple condensation product 4‐(4‐chlorobenzylidene)‐1‐phenylpyrazolidine‐3,5‐dione. However, the reaction product proved to be meso‐(E,E)‐1,1′‐[1,2‐bis(4‐chlorophenyl)ethane‐1,2‐diyl]bis(phenyldiazene), C26H20Cl2N4, and a tentative mechanism is proposed. Crystallization from ethanol produces two concomitant polymorphs, i.e. a triclinic form, (I), in the space group P, and a monoclinic form, (II), in the space group C2/c. In both polymorphs, the molecules lie across centres of inversion, but in (II), the molecules are subject to whole‐molecule disorder equivalent to configurational disorder with occupancies of 0.6021 (19) and 0.3979 (19). There are no hydrogen bonds in the crystal structure of polymorph (I), but the molecules of polymorph (II) are linked by C—H...π(arene) hydrogen bonds into complex chains, which are further linked into sheets by C—H...N interactions. 相似文献
12.
Sheng‐Run Zheng Yue‐Peng Cai Xue‐Li Zhang Cheng‐Yong Su 《Acta Crystallographica. Section C, Structural Chemistry》2005,61(11):o642-o644
The title compound, C16H16N5+·Cl− (nbbH+·Cl−), displays N—H⋯N, N—H⋯Cl and π–π interactions in the crystal packing. The Cl− anion is chelated by the nbbH+ cation via two N—H⋯Cl hydrogen bonds. Inter‐ion N—H⋯N and N—H⋯Cl hydrogen bonds link ions related by 21 screw axes into chains along the c axis. These chains are further linked by glide‐plane operations to generate a three‐dimensional network, which is additionally stabilized by interchain π–π interactions. 相似文献
13.
Jean-Claude Daran Nicolas Gimeno Maryse Gouygou Jrme Volkman 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(5):523-528
The self‐assembly of ditopic bis(1H‐imidazol‐1‐yl)benzene ligands ( L H) and the complex (2,2′‐bipyridyl‐κ2N,N′)bis(nitrato‐κO)palladium(II) affords the supramolecular coordination complex tris[μ‐bis(1H‐imidazol‐1‐yl)benzene‐κ2N3:N3′]‐triangulo‐tris[(2,2′‐bipyridyl‐κ2N,N′)palladium(II)] hexakis(hexafluoridophosphate) acetonitrile heptasolvate, [Pd3(C10H8N2)3(C12H10N4)3](PF6)6·7CH3CN, 2 . The structure of 2 was characterized in acetonitrile‐d3 by 1H/13C NMR spectroscopy and a DOSY experiment. The trimeric nature of supramolecular coordination complex 2 in solution was ascertained by cold spray ionization mass spectrometry (CSI–MS) and confirmed in the solid state by X‐ray structure analysis. The asymmetric unit of 2 comprises the trimetallic Pd complex, six PF6? counter‐ions and seven acetonitrile solvent molecules. Moreover, there is one cavity within the unit cell which could contain diethyl ether solvent molecules, as suggested by the crystallization process. The packing is stabilized by weak inter‐ and intramolecular C—H…N and C—H…F interactions. Interestingly, the crystal structure displays two distinct conformations for the L H ligand (i.e. syn and anti), with an all‐syn‐[Pd] coordination mode. This result is in contrast to the solution behaviour, where multiple structures with syn/anti‐ L H and syn/anti‐[Pd] are a priori possible and expected to be in rapid equilibrium. 相似文献
14.
V. I. Bregadze S. A. Glazun P. V. Petrovskii Z. A. Starikova A. G. Buyanovskaya R. U. Takazova M. Gielen D. de Vos M. Kemmer M. Biesemans R. Willem 《应用有机金属化学》2004,18(4):191-194
Sodium bis[2‐(3′,6′,9′‐trioxadecyl)‐1,2‐dicarba‐closo‐dodecaborane‐1‐carboxylato]triphenylstannate, [(CH3OCH2CH2OCH2CH2OCH2CH2)‐1,2‐C2B10H10‐9‐COO)2SnPh3]? Na+, compound 1, was synthesized by the 1:1 condensation of triphenyltin(IV) hydroxide with 2‐(3′,6′,9′‐trioxadecyl)‐1,2‐dicarba‐closo‐dodecaborane‐1‐carboxylic acid and crystallized in the presence of sodium bicarbonate. Its structure was determined by spectroscopy, elemental analysis and X‐ray diffraction. The structure of 1 consists of trigonal bipyramidal [Sn(Ph)3(L)2]? anions and Na+ cations coordinated by oxygen atoms of polyoxaalkyl chains of different stannate anions, forming cation–anion chains elongated along the c axis. Compound 1 is significantly more active in vitro against seven tumour cell lines of human origin than 5‐fluorouracil, cis‐platin, carboplatin, and previously reported organotin carboranecarboxylates, but is less active than organotin polyoxaalkylcarboxylates. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
15.
Sunhee Lee Soyoung Kwak Keumhee Lee Byung Gi Kim Minseong Kim Dong Hwan Wang Won-Sik Han 《Acta Crystallographica. Section C, Structural Chemistry》2019,75(7):919-926
The energy level of a hole‐transporting material (HTM) in organic electronics, such as organic light‐emitting diodes (OLEDs) and perovskite solar cells (PSCs), is important for device efficiency. In this regard, we prepared 4,4′‐(cyclohexane‐1,1‐diyl)bis[N,N‐bis(4‐methoxyphenyl)aniline] ( TAPC‐OMe ), C46H46N2O4, to tune the energy level of 4,4′‐(cyclohexane‐1,1‐diyl)bis[N,N‐bis(4‐methylphenyl)aniline] ( TAPC ), which is a well‐known HTM commonly used in OLED applications. A systematic characterization of TAPC‐OMe , including 1H and 13C NMR, elemental analysis, UV–Vis absorption, fluorescence emission, density functional theory (DFT) calculations and single‐crystal X‐ray diffraction, was performed. TAPC‐OMe crystallized in the triclinic space group P, with two molecules in the asymmetric unit. The dihedral angles between the central amine triangular planes and those of the phenyl groups varied from 26.56 (9) to 60.34 (8)° due to the steric hindrance of the central cyclohexyl ring. This arrangement might be induced by weak hydrogen bonds and C—H…π(Ph) interactions in the extended structure. The emission maxima of TAPC‐OMe showed a significant bathochomic shift compared to that of TAPC . A strong dependency of the oxidation potentials on the nature of the electron‐donating ability of substituents was confirmed by comparing oxidation potentials with known Hammett parameters (σ). 相似文献
16.
Muhammad Kaleem Khosa Masood Parvez Muhammad Mazhar Saqib Ali Sadiq‐ur‐Rehman 《应用有机金属化学》2005,19(1):202-202
The germanium atom in [(C6H5)3GeCH(4‐ClC6H4)CH2C(C6H5)2OH] is in a distorted tetrahedral geometry. Steric hindrance precludes O? H···O intra‐ or inter‐molecular bonding. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
17.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(2):72-77
Ligands based on polycarboxylic acids are excellent building blocks for the construction of coordination polymers; they may bind to a variety of metal ions and form clusters, as well as extended chain or network structures. Among these building blocks, biphenyltetracarboxylic acids (H4bpta) with C 2 symmetry have recently attracted attention because of their variable bridging and multidentate chelating modes. The new luminescent three‐dimensional coordination polymer poly[(μ5‐1,1′‐biphenyl‐2,2′,4,4′‐tetracarboxylato)bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)benzene]dizinc(II)], [Zn2(C16H6O8)(C12H10N4)]n , was synthesized solvothermally and characterized by single‐crystal X‐ray diffraction, elemental analysis and IR spectroscopy. The crystal structure contains two crystallographically independent ZnII cations. Both metal cations are located on twofold axes and display distorted tetrahedral coordination geometries. Neighbouring ZnII centres are bridged by carboxylate groups in the syn –anti mode to form one‐dimensional chains. Adjacent chains are linked through 1,1′‐biphenyl‐2,2′,4,4′‐tetracarboxylate and 1,4‐bis(1H‐imidazol‐1‐yl)benzene ligands to form a three‐dimensional network. In the solid state, the compound exhibits blue photoluminescence and represents a promising candidate for a thermally stable and solvent‐resistant blue fluorescent material. 相似文献
18.
《Acta Crystallographica. Section C, Structural Chemistry》2017,73(11):930-936
The polyfluorinated title compounds, [M Cl2(C16H16F4N2O2)] or [4,4′‐(HCF2CH2OCH2)2‐2,2′‐bpy]M Cl2 [M = Pd, ( 1 ), and M = Pt, ( 2 )], have –C(Hα)2OC(Hβ)2CF2H side chains with H‐atom donors at the α and β sites. The structures of ( 1 ) and ( 2 ) are isomorphous, with the nearly planar (bpy)M Cl2 molecules stacked in columns. Within one column, π‐dimer pairs alternate between a π‐dimer pair reinforced with C—H…Cl hydrogen bonds (α,α) and a π‐dimer pair reinforced with C—Hβ…F(—C) interactions (abbreviated as C—Hβ…F—C,C—Hβ…F—C). The compounds [4,4′‐(CF3CH2OCH2)2‐2,2′‐bpy]M Cl2 [M = Pd, ( 3 ), and M = Pt, ( 4 )] have been reported to be isomorphous [Lu et al. (2012). J. Fluorine Chem. 137 , 54–56], yet with disorder in the fluorous regions. The molecules of ( 3 ) [or ( 4 )] also form similar stacks, but with alternating π‐dimer pairs between the (α,β; α,β) and (β,β) forms. Through (C—)H…Cl hydrogen‐bond interactions, one molecule of ( 1 ) [or ( 2 )] is expanded into an aggregate of two inversion‐related π‐dimer pairs, one pair in the (α,α) form and the other pair in the (C—Hβ…F—C,C—Hβ…F—C) form, with the plane normals making an interplanar angle of 58.24 (3)°. Due to the demands of maintaining a high coordination number around the metal‐bound Cl atoms in molecule ( 1 ) [or ( 2 )], the ponytails of molecule ( 1 ) [or ( 2 )] bend outward; in contrast, the ponytails of molecule ( 3 ) [or ( 4 )] bend inward. 相似文献
19.
Cai‐Xia Yu Feng Zhao Min Zhou Dan‐Feng Zhi Lei‐Lei Liu 《Acta Crystallographica. Section C, Structural Chemistry》2014,70(3):277-280
In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnII cation, two halves of 2,2′‐(diazene‐1,2‐diyl)dibenzoate anions (denoted L2−) and half of a 1,2‐bis(pyridin‐4‐yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnII centre is four‐coordinated by three O atoms of bridging carboxylate groups from three L2− ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnII atoms are bridged by two carboxylate groups of L2− ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodes via the sharing of four L2− ligands to form a two‐dimensional [Zn2L4]n net. These nets are separated by bpe ligands acting as spacers, producing a three‐dimensional framework with a 4664 topology. Powder X‐ray diffraction and solid‐state photoluminescence were also measured. 相似文献
20.
Annie Cleetus Gulshan Rani G. B. Dharma Rao Deepak Chopra 《Acta Crystallographica. Section C, Structural Chemistry》2020,76(8):786-794
Methyl 4‐(4‐fluorophenyl)‐6‐methyl‐2‐oxo‐1,2,3,4‐tetrahydropyrimidine‐5‐carboxylate, ( I ), was found to exhibit solvatomorphism. The compound was prepared using a classic Biginelli reaction under mild conditions, without using catalysts and in a solvent‐free environment. Single crystals of two solvatomorphs and one anhydrous form of ( I ) were obtained through various crystallization methods. The anhydrous form, C13H13FN2O3, was found to crystallize in the monoclinic space group C2/c. It showed one molecule in the asymmetric unit. The solvatomorph with included carbon tetrachloride, C13H13FN2O3·0.25CCl4, was found to crystallize in the monoclinic space group P2/n. The asymmetric unit revealed two molecules of ( I ) and one disordered carbon tetrachloride solvent molecule that lies on a twofold axis. A solvatomorph including ethyl acetate, C13H13FN2O3·0.5C4H8O2, was found to crystallize in the triclinic space group P with one molecule of ( I ) and one solvent molecule on an inversion centre in the asymmetric unit. The solvent molecules in the solvatomorphs were found to be disordered, with a unique case of crystallographically induced disorder in ( I ) crystallized with ethyl acetate. Hydrogen‐bonding interactions, for example, N—H…O=C, C—H…O=C, C—H…F and C—H…π, contribute to the crystal packing with the formation of a characteristic dimer through N—H…O=C interactions in all three forms. The solvatomorphs display additional interactions, such as C—F…N and C—Cl…π, which are responsible for their molecular arrangement. The thermal properties of the forms were analysed through differential scanning calorimetry (DSC), hot stage microscopy (HSM) and thermogravimetric analysis (TGA) experiments. 相似文献