首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dibenz[b,f]azepine (DBA) is a privileged 6‐7‐6 tricyclic ring system of importance in both organic and medicinal chemistry. Benzo[b]pyrimido[5,4‐f]azepines (BPAs), which also contain a privileged 6‐7‐6 ring system, are less well investigated, probably because of a lack of straightforward and versatile methods for their synthesis. A simple and versatile synthetic approach to BPAs based on intramolecular Friedel–Crafts alkylation has been developed. A group of closely‐related benzo[b]pyrimido[5,4‐f]azepine derivatives, namely (6RS)‐4‐chloro‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3, (I), (6RS)‐4‐chloro‐8‐hydroxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3O, (II), (6RS)‐4‐<!?tlsb=‐0.14pt>chloro‐8‐methoxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C15H16ClN3O, (III), and (6RS)‐4‐chloro‐8‐methoxy‐6,11‐dimethyl‐2‐phenyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C21H20ClN3O, (IV), has been prepared and their structures compared with the recently published structure [Acosta‐Quintero et al. (2015). Eur. J. Org. Chem. pp. 5360–5369] of (6RS)‐4‐chloro‐2,6,8,11‐tetramethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, (V). All five compounds crystallize as racemic mixtures and they have very similar molecular conformations, with the azepine ring adopting a boat‐type conformation in each case, although the orientation of the methoxy substituent in each of (III) and (IV) is different. The supramolecular assemblies in (II) and (IV) depend upon hydrogen bonds of the O—H...N and C—H...π(arene) types, respectively, those in (I) and (V) depend upon π–π stacking interactions involving pairs of pyrimidine rings, and that in (III) depends upon a π–π stacking interaction involving pairs of phenyl rings. Short C—Cl...π(pyrimidine) contacts are present in (I), (II) and (IV) but not in (III) or (V).  相似文献   

2.
A concise, efficient and versatile synthesis of amino‐substituted benzo[b]pyrimido[5,4‐f]azepines is described: starting from a 5‐allyl‐4,6‐dichloropyrimidine, the synthesis involves base‐catalysed aminolysis followed by intramolecular Friedel–Crafts cyclization. Four new amino‐substituted benzo[b]pyrimido[5,4‐f]azepines are reported, and all the products and reaction intermediates have been fully characterized by IR, 1H and 13C NMR spectroscopy and mass spectrometry, and the molecular and supramolecular structures of three products and one intermediate have been determined. In each of N,2,6,11‐tetramethyl‐N‐phenyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepin‐4‐amine, C22H24N5, (III), 4‐(1H‐benzo[d]imidazol‐1‐yl)‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, which crystallizes as a 0.374‐hydrate, C21H19N5·0.374H2O, (VIIIa), and 6,7,9,11‐tetramethyl‐4‐(5‐methyl‐1H‐benzo[d]imidazol‐1‐yl)‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C24H25N5, (VIIIc), the azepine ring adopts a boat conformation, but with a different configuration at the stereogenic centre in (VIIIc), as compared with (III) and (VIIIa). In the intermediate 5‐allyl‐6‐(1H‐benzo[d]imidazol‐1‐yl)‐N‐methyl‐N‐(4‐methylphenyl)pyrimidin‐4‐amine, C22N21N5, (VIIb), the immediate precursor of 4‐(1H‐benzo[d]imidazol‐1‐yl)‐6,8,11‐trimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, (VIIIb), the allyl group is disordered over two sets of atomic sites having occupancies of 0.688 (5) and 0.312 (5). The molecules of (III) are linked into chains by a C—H…π(pyrimidine) hydrogen bond, and those of (VIIb) are linked into complex sheets by three hydrogen bonds, one of the C—H…N type and two of C—H…π(arene) type. The molecules of the organic component in (VIIIa) are linked into a chain of rings by two C—H…π(arene) hydrogen bonds, and these chains are linked into sheets by the water components; a single weak C—H…N hydrogen bond links molecules of (VIIIc) into centrosymmetric R22(10) dimers. Comparisons are made with some related compounds.  相似文献   

3.
A concise, efficient and versatile route from simple starting materials to tricyclic tetrahydro‐1‐benzazepines carrying [a]‐fused heterocyclic units is reported. Thus, the easily accessible methyl 2‐[(2‐allyl‐4‐chlorophenyl)amino]acetate, (I), was converted, via (2RS,4SR)‐7‐chloro‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1‐benzo[b]azepine‐2‐carboxylate, (II), to the key intermediate methyl (2RS,4SR)‐7‐chloro‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (III). Chloroacetylation of (III) provided the two regioisomers methyl (2RS,4SR)‐7‐chloro‐1‐(2‐chloroacetyl)‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (IVa), and methyl (2RS,4SR)‐7‐chloro‐4‐(2‐chloroacetoxy)‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, C14H15Cl2NO4, (IVb), as the major and minor products, respectively, and further reaction of (IVa) with aminoethanol gave the tricyclic target compound (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐3‐(2‐hydroxyethyl)‐2,3,4a,5,6,7‐hexahydrobenzo[f]pyrazino[1,2‐a]azepine‐1,4‐dione, C15H17ClN2O4, (V). Reaction of ester (III) with hydrazine hydrate gave the corresponding carbohydrazide (VI), which, with trimethoxymethane, gave a second tricyclic target product, (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐4a,5,6,7‐tetrahydrobenzo[f][1,2,4]triazino[4,5‐a]azepin‐4(3H)‐one, C12H12ClN3O2, (VII). Full spectroscopic characterization (IR, 1H and 13C NMR, and mass spectrometry) is reported for each of compounds (I)–(III), (IVa), (IVb) and (V)–(VII), along with the molecular and supramolecular structures of (IVb), (V) and (VII). In each of (IVb), (V) and (VII), the azepine ring adopts a chair conformation and the six‐membered heterocyclic rings in (V) and (VII) adopt approximate boat forms. The molecules in (IVb), (V) and (VII) are linked, in each case, into complex hydrogen‐bonded sheets, but these sheets all contain a different range of hydrogen‐bond types: N—H…O, C—H…O, C—H…N and C—H…π(arene) in (IVb), multiple C—H…O hydrogen bonds in (V), and N—H…N, O—H…O, C—H…N, C—H…O and C—H…π(arene) in (VII).  相似文献   

4.
Cyclocondensation of 5‐amino‐6‐methyl‐2‐morpholinopyrimidine‐4‐thiol ( 1 ) and 2‐bromo‐5,5‐dimethylcyclohexane‐1,3‐dione ( 2 ) under mild reaction condition afforded 4,7,7‐trimethyl‐2‐morpholino‐7,8‐dihydro‐5H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐9(6H )‐one ( 3 ). The 1H and 13C NMR data of compound ( 3 ) are demonstrated that this compound exists primarily in the enamino ketone form. Reaction of compound ( 3 ) with phosphorous oxychloride gave 4‐(9‐chloro‐4,7,7‐trimethyl‐7,8‐dihydro‐6H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐2‐yl)morpholine ( 4 ). Nucleophilic substitution of chlorine atom of compound ( 4 ) with typical secondary amines in DMF and K2CO3 furnished the new substituted derivatives of 4‐(4,7,7‐trimethyl‐7,8‐dihydro‐6H‐benzo[b ]pyrimido[5,4‐e ][1,4]thiazin‐2‐yl)morpholine ( 5a , 5b , 5c , 5d , 5e , 5f , 5g , 5h ). All the synthesized products were characterized and confirmed by their spectroscopic and microanalytical data.  相似文献   

5.
In the structure of (6R*,11R*)‐5‐acetyl‐11‐ethyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxylic acid, C19H19NO3, (I), the molecules are linked into sheets by a combination of O—H...O and C—H...O hydrogen bonds; in the structure of the monomethyl analogue (6RS,11SR)‐5‐acetyl‐11‐ethyl‐2‐methyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxylic acid, C20H21NO3, (II), the molecules are linked into simple C(7) chains by O—H...O hydrogen bonds; and in the structure of the dimethyl analogue (6RS,11SR)‐5‐acetyl‐11‐ethyl‐1,3‐dimethyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxylic acid, C21H23NO3, (III), a combination of O—H...O, C—H...O and C—H...π(arene) hydrogen bonds links the molecules into a three‐dimensional framework structure. None of these structures exhibits the R22(8) dimer motif characteristic of simple carboxylic acids.  相似文献   

6.
The title compound [systematic name: 8‐chloro‐11‐(piperidin‐4‐yl­idene)‐6,11‐dihydro‐5H‐benzo[4,5]cyclo­hepta­[2,1‐b]pyridine], C19H19ClN2, was crystallized from ethyl acetate. The inter­esting feature of the reported structure is that it does not contain any strong hydrogen bonds, although the mol­ecule contains a secondary NH group, which is a good hydrogen‐bond donor.  相似文献   

7.
Carbamazepine (CBZ) is well known as a model active pharmaceutical ingredient used in the study of polymorphism and the generation and comparison of cocrystal forms. The pharmaceutical amide dihydrocarbamazepine (DCBZ) is a less well known material and is largely of interest here as a structural congener of CBZ. Reaction of DCBZ with strong acids results in protonation of the amide functionality at the O atom and gives the salt forms dihydrocarbamazepine hydrochloride {systematic name: [(10,11‐dihydro‐5H‐dibenzo[b,f]azepin‐5‐yl)(hydroxy)methylidene]azanium chloride, C15H15N2O+·Cl}, dihydrocarbamazepine hydrochloride monohydrate {systematic name: [(10,11‐dihydro‐5H‐dibenzo[b,f]azepin‐5‐yl)(hydroxy)methylidene]azanium chloride monohydrate, C15H15N2O+·Cl·H2O} and dihydrocarbamazepine hydrobromide monohydrate {systematic name: [(10,11‐dihydro‐5H‐dibenzo[b,f]azepin‐5‐yl)(hydroxy)methylidene]azanium bromide monohydrate, C15H15N2O+·Br·H2O}. The anhydrous hydrochloride has a structure with two crystallographically independent ion pairs (Z′ = 2), wherein both cations adopt syn conformations, whilst the two hydrated species are mutually isostructural and have cations with anti conformations. Compared to neutral dihydrocarbamazepine structures, protonation of the amide group is shown to cause changes to both the molecular (C=O bond lengthening and C—N bond shortening) and the supramolecular structures. The amide‐to‐amide and dimeric hydrogen‐bonding motifs seen for neutral polymorphs and cocrystalline species are replaced here by one‐dimensional polymeric constructs with no direct amide‐to‐amide bonds. The structures are also compared with, and shown to be closely related to, those of the salt forms of the structurally similar pharmaceutical carbamazepine.  相似文献   

8.
A new series of 3‐[ω‐[4‐(4‐substituted phenyl)piperazin‐1‐yl]alkyl]‐5H‐pyrimido[5,4‐b]indole‐(1H,3H)‐2,4‐diones ( 3–10 and 12–13 ) were synthesized from the N‐(2‐chloroethyl)‐N'‐[3‐(2‐ethoxycarbonyl)indolyl] urea ( 1 ) or the N‐(3‐chloropropyl)‐N'‐[3‐(2‐ethoxycarbonyl)indolyl] urea ( 2 ) and a number of 1‐(4‐substi‐tuted‐phenyl)piperazines. 3‐[2‐[4‐(4‐Aminophenyl)piperazin‐1‐yl]ethyl]‐5H‐pyrimido[5,4‐b]indole‐(1H,3H)2,4‐dione ( 14 ) was obtained by reduction of the parent nitro compound 8 . The obtained 5H‐pyrimido[5,4‐b]indole‐(1H,3H)2,4‐dione derivatives were tested towards cloned α1A, α1B and α1D adrenergic receptors subtypes in binding assays. Some compounds showed good affinity and selectivity for the α1D‐adrenoceptor subtype.  相似文献   

9.
A simple and effective two‐step approach to tricyclic pyrimidine‐fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)‐8‐chloro‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indole, C15H14ClN3, (I), the five‐membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)‐9‐chloro‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinoline, C16H16ClN3, (II). However, the seven‐membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi‐axial site in (I) but a quasi‐equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to form C(5) chains and inversion‐related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.  相似文献   

10.
A simple and efficient synthesis of novel ortho‐ and peri‐annulated heterocyclic systems—2,6,7,9‐tetrahydro‐8H‐pyrazolo[5,4,3‐de]pyrimido[4,5‐e][1,4]diazepine, 2,6,7,9‐tetrahydro‐8H‐pyrazolo[5,4,3‐de]pyrimido [5,4‐f][1,4]thiazepine, and 6,9‐dihydro‐2H‐pyrazolo[3,4,5‐ef]pyrimido[5,4‐f][1,2,4]triazepine is described. J. Heterocyclic Chem.,, (2012).  相似文献   

11.
The reaction of compound 2‐amino‐3‐cyano‐6‐methylquinoxaline‐1,4‐dioxide with cyclohexanone and dimedone in dimethylformamide in the presence of anhydrous ZnCl2 under Friedländer‐type cyclocondensation gave compounds 12‐amino‐9‐methyl‐1,2,3,4,12,12a‐hexahydroquinolino[2,3‐b]quinoxaline‐6,11‐dioxide ( 4 ), 7‐methyl‐4‐oxo‐3,4‐dihydro‐1H‐spiro[benzo[g]pteridine‐2,1′‐cyclohexane]5,10‐dioxide ( 5 ), and 12‐amino‐3,3,9‐trimethyl‐1‐oxo‐1,2,3,4,12,12a‐hexahydroquinolino[2,3‐b]quinoxaline‐6,11‐dioxide ( 6 ); (R)‐3′,3′,7‐trimethyl‐4,5′‐dioxo‐3,4‐dihydro‐1H‐spiro[benzo[g]pteridine‐2,1′‐cyclohexane]5,10‐dioxide ( 7 ) were achieved and evaluated their biological activity as antibacterial and antifungal activities and antitumor evaluation, and also, the density functional theory calculations were evaluated.  相似文献   

12.
Synthesis of a novel class of fused heterotetracyclic compounds, 8H‐1‐thia‐8‐aza‐dibenzo[e,h]azulenes ( VII ), is described. Starting N‐benzoyl‐protected 5H‐dibenzo[b,f]azepine ( XI , PG = Bz) was oxidized to 5‐benzoyl‐10,11‐epoxy‐10,11‐dihydro‐5H‐dibenzo[b,f]azepine ( 2 ), which subsequently rearranged in Lewis acid‐induced epoxide ring opening to give 5‐benzoyl‐5,11‐dihydro‐10H‐dibenzo[b,f]azepin‐10‐one ( 3 ). Vilsmeier reaction of 3 provided β‐chlorovinyl aldehyde 4 that readily cyclized with ethyl 2‐mercaptoacetate to form dibenzazepino[4,5]‐fused thiophene structure 5 . Further transformation of substituent at C‐2 position of 5 and N‐deprotection led to final aminoalkoxy derivatives 9 . All compounds with tetracyclic skeleton were tested in vitro for their anti‐inflammatory activity. J. Heterocyclic Chem., (2011).  相似文献   

13.
5‐Acetyl‐2‐chloro‐8,11‐dimethyl‐5,6,11,12‐tetrahydrodibenzo[b,f]azocine, C19H20ClNO, (I), crystallizes as a single fully ordered isomer, but 14‐acetyl‐8,11‐dimethyl‐7,8,13,14‐tetrahydrobenzo[f]naphtho[1,2‐b]azocine–14‐acetyl‐8,9‐dimethyl‐7,8,13,14‐tetrahydrobenzo[f]naphtho[1,2‐b]azocine (74/26), C23H23NO, (II), exhibits threefold whole‐molecule disorder involving both configurational and structural isomers. In (I) and in the predominant form of (II), the azocine rings adopt very similar conformations, forming boat‐shaped rings having approximate twofold rotational symmetry. There are no direction‐specific intermolecular interactions in the crystal structure of (I), but the molecules of (II) are weakly linked into chains by an aromatic π–π stacking interaction. The compounds were made under green conditions using an acid‐catalysed cyclization process having very high atom utilization.  相似文献   

14.
The biological potential of compounds of the tricyclic dibenzo[b ,e ]azepine system has resulted in considerable synthetic efforts to develop efficient methods for the synthesis of new derivatives of this kind. (9RS ,15RS )‐9‐Ethyl‐11‐methyl‐9,13b‐dihydrodibenzo[c ,f ]thiazolo[3,2‐a ]azepin‐3(2H )‐one, C19H19NOS, (I), crystallizes as a kryptoracemate with Z ′ = 2 in the space group P 21, with one molecule each of the (9R ,15R ) and (9S ,15S ) configurations in the asymmetric unit, while (9RS ,15RS )‐9‐ethyl‐7,12‐dimethyl‐9,13b‐dihydrodibenzo[c ,f ]thiazolo[3,2‐a ]azepin‐3(2H )‐one, C20H21NOS, (II), crystallizes with Z ′ = 1 in the space group C 2/c . Ethyl (13RS )‐2‐chloro‐13‐ethyl‐4‐oxo‐8,13‐dihydro‐4H‐benzo[5,6]azepino[3,2,1‐ij ]quinoline‐5‐carboxylate, C22H20ClNO3, (III), exhibits enantiomeric disorder in the space group P such that the reference site is occupied by the 13R and 13S enantiomers, with occupancies of 0.900 (6) and 0.100 (6). In each of the two independent molecules in (I), the five‐membered ring adopts an envelope conformation, but the corresponding ring in (II) adopts a half‐chair conformation, while the six‐membered ring in the major form of (III) adopts a twist‐boat conformation. The conformation of the seven‐membered ring in each of (I), (II) and the major form of (III) approximates to the twist‐boat form. The molecules of compound (I) are linked by two C—H…O hydrogen bonds to form two independent antiparallel C (5) chains, with each type containing only one enantiomer. These chains are linked into sheets by two C—H…π(arene) hydrogen bonds, in which the two donors are both provided by the (9R ,15R ) enantiomer and the two acceptor arene rings form part of a molecule of (9S ,15S ) configuration, precluding any additional crystallographic symmetry. The molecules of compound (II) are linked by inversion‐related C—H…π(arene) hydrogen bonds to form isolated cyclic centrosymmetric dimers. The molecules of compound (III) are linked into cyclic centrosymmetric dimers by C—H…O hydrogen bonds and these dimers are linked into chains by a π–π stacking interaction. Comparisons are made with some related structures.  相似文献   

15.
Compounds containing the tricyclic dibenzo[b,e]azepine system have potential activity in the treatment of a number of diseases. Continuing with our studies on the synthesis of new small and potentially bioactive molecules, a synthetic route, involving acid‐catalysed intramolecular Friedel–Crafts cyclization, to the readily separable diastereoisomers of 11‐ethyl‐6,11‐dihydro‐5H‐dibenzo[b,e]azepine‐6‐carboxamide, a potentially useful precursor in the synthesis of analogues of some anti‐allergenic, antidepressant and antihistaminic drugs currently in use, has been developed starting from 2‐allylphenylamine and methyl 2‐bromo‐2‐phenylacetate and proceeding via racemic methyl 2‐[(2‐allylphenyl)amino]‐2‐phenylacetate (A) and racemic 2‐[(2‐allylphenyl)amino]‐2‐phenylacetamide (B), to give the two diastereoisomers (I) and (II), C17H18N2O. Isomers (I) and (II), and their precursors (A) and (B), have all been fully characterized spectroscopically. Structure analysis of the minor isomer (I) shows that it has the (6RS,11RS) configuration, and that the azepine ring adopts a conformation intermediate between the boat and twist‐boat forms, with the carboxamide and ethyl substituents both occupying quasi‐equatorial sites. The molecules of (I) are linked by a combination of N—H…O, N—H…π(arene) and C—H…π(arene) hydrogen bonds to form complex sheets. Comparisons are made with the structures of some related compounds.  相似文献   

16.
Reaction of 4H‐pyrimido[2,1‐b]benzothiazole‐2‐thiomethyl‐3‐cyano‐4‐one (1) with hydrazine hydrate/aryl hydrazine/heteryl hydrazine in the presence of anhydrous potassium carbonate and dimethyl formamide afforded 3‐amino‐4‐oxo‐(2H)/aryl/heteryl pyrazolo[3′,4′:4,5]pyrimido[2,1‐b]benzothiazoles in good yield. These pyrazole derivatives on diazotization followed by replacement with hydroxy, chloro, bromo, iodo and on reduction gave the corresponding 3‐substituted derivatives.  相似文献   

17.
The reaction of methyl 2‐(3‐chloro‐1,4‐dioxo‐1,4‐dihydronaphthalen‐2‐yl)propenoate ( 2a ) with primary amines gave 4‐chloro‐5‐hydroxy‐3‐methoxycarbonyl‐1H‐benzo[g]indoles 5a‐f as major compounds and 3‐methoxycarbonyl‐4,9‐dioxo‐2,3,4,9‐tetrahydro‐1H‐benzo[f]indoles 6a‐d as minor ones. Whereas the reaction of 3‐(3‐chloro‐1,4‐dioxo‐1,4‐dihydronaphthalen‐2‐yl)‐3‐buten‐2‐one ( 2b ) with primary amines afforded the corresponding 1H‐benzo[g]indoles 5g‐i as major products and 3‐acetyl‐4,9‐dihydro‐4,9‐dioxo‐1H‐benzo[f]indoles 7g, h as minor products.  相似文献   

18.
The novel crystal structures of ethyl (S)‐P‐(4‐oxo‐4H‐benzo[4,5]thiazolo[3,2‐a]pyrimidin‐3‐yl)‐N‐[(R)‐1‐phenylethyl]phosphonamidate, C20H20N3O3PS, I , and diethyl (4‐isopropyl‐2‐oxo‐3,4‐dihydro‐2H‐benzo[4,5]thiazolo[3,2‐a]pyrimidin‐3‐yl)phosphonate, C18H25N2O4PS, II , were characterized by X‐ray diffraction analysis. The crystal packing of I is dominated by two infinite stacks composed of symmetry‐independent molecules linked by distinctively different hydrogen‐bond systems. The structure of II shows a ladder packing topology similar to those observed in related phosphorylated azaheterocycles. Structural studies are supplemented by calculations on the interactions stabilizing the molecular assemblies using the PIXEL method. Additionally, fingerprint plots derived from the Hirshfeld surfaces were generated for each structure to characterize the crystal packing arrangements in detail. The aromaticities of the heterocyclic moieties have been investigated using HOMA and HOMHED parametrization and compared with structures reported previously.  相似文献   

19.
This paper describes the synthesis of two 4-amino-5H-pyrimido[5,4-b]indoles 5 , 4-hydrazino-5H-pyrimido[5,4-b]indole 6 , two 1,2,4-triazolo[4,3-c]pyrimido[5,4-b]indoles 8 , and tetrazolo[4,5-c]pyrimido[5,4-b]indole 10 . Starting with ethyl 3-aminoindole-2-carboxylate 1 , 5H-pyrimido[5,4-b]indol-4-one 2 was obtained (80%) by condensing with formamide. Reactions of 2 with phosphorus oxychloride and phosphorus pentasulfide gave respectively, 4-chloro-5H-pyrimido[5,4-b]indole 3 (70%) and 5H-pyrimido[5,4-b]indole-4-thione 4 (80%). Compound 3 reacted with amines (morpholine, piperidine) to give the respective 4-amino-5H-pyrimido[5,4-b]-indoles 5 , and compound 4 reacted with hydrazine to give 4-hydrazino-5H-pyrimido[5,4-b]indole 6 (80%). Two hydrazones of 6 (benzylidene, isopropylidene) 7 were also prepared (90%). Compound 6 reacted with formic and acetic acids to give (65–75%) the respective 1,2,4-triazolo[4,3-c]pyrimido[5,4-b]indoles 8 and with nitrous acid to give tetrazolo[4,5-c]pyrimido[5,4-b]indole 9 (85%). All the new compounds 2 to 9 were characterized by elemental analysis and spectral data (ir, nmr).  相似文献   

20.
In this paper the reaction of 2‐(2′‐thienylmethylene)‐3,4‐dihydronaphthalen‐2(1H)‐one ( 1 ) with cyanothioacetamide gave a mixture of 3‐cyano‐5,6‐dihydro‐4‐(2′‐thienyl)‐benzo[h]quinolin‐2(1H)‐thione ( 2 ) and the related disulfide 3 . Compound 2 was reacted with some halo compounds namely; ethyl chloroacetate, chloroacetamide, chloro(N‐(p‐chlorophenyl))acetamide, N1‐chloroacetylsulfanilamide, and 2‐chloromethyl‐1H‐benzimidazole to produce a series of 2‐(substituted)methylthio‐3‐cyano‐5,6‐dihydro‐4‐(2′‐thienyl)benzo[h]quinolines 4a , 4b , 4c , 4d , 4e and 11 . Upon heating the latter compounds with sodium ethoxide, they underwent intramolecular Thorpe–Zeigler cyclization to furnish the corresponding 2‐(substituted)‐3‐amino‐5,6‐dihydro‐4‐(2′‐thienyl)‐benzo[h]thieno[2,3‐b]quinolines 5a , 5b , 5c , 5d , 5e and 12 . (3‐Cyano‐5,6‐dihydro‐4‐(2′‐thienyl)‐benzo[h]quinolin‐2‐ylthio)acethydrazide ( 8 ) and the related isomer, 3‐amino‐5,6‐dihydro‐4‐(2′‐thienyl)thieno[2,3‐b]benzo[h]quinoline‐2‐carbohydrazide ( 9 ), were also synthesized. Most of the aforementioned compounds were used as key intermediates for synthesizing other benzo[h]quinolines, benzo[h]thieno[2,3‐b]quinolines as well as benzo[h]pyrimido[4′,5′:4,5] thieno[2,3‐b]quinolines. The structure of all synthesized compounds was confirmed by spectroscopic measurements and analytical analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号