首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An α‐diimine‐stabilized Al? Al‐bonded compound [L2?AlII? AlIIL2?] (L=[{(2,6‐iPr2C6H3)NC(Me)}2]; 1 ) consists of dianionic α‐diimine ligands and sub‐valent Al2+ ions and thus could potentially behave as a multielectron reductant. The reactions of compound 1 with azo‐compounds afforded phenylimido‐bridged products [L?AlIII(μ2‐NPh)(μ2‐NAr)AlIIIL?] ( 2 – 4 ). During the reaction, the dianionic ligands and Al2+ ions were oxidized into monoanions and Al3+, respectively, whilst the [NAr]2? imides were produced by the four‐electron reductive cleavage of the N?N double bond. Upon further reduction by Na, the monoanionic ligands in compound 2 were reduced to the dianion to give [(L2?)2AlIII22NPh)2Na2(thf)4] ( 5 ). Interestingly, when asymmetric azo‐compounds were used, the asymmetric adducts were isolated as the only products (compounds 3 and 4 ). DFT calculations indicated that the reaction was quite feasible in the singlet electronic state, but the final product with the triplet‐state monoanionic ligands could result from an exothermic singlet‐to‐triplet conversion during the reaction process.  相似文献   

2.
3.
4.
5.
A series of tetraoxane? triazine hybrids and spiro[piperidine‐4,3′‐tetraoxanes] have been synthesized, and all the compounds were screened for in vitro antimalarial activity against chloroquine‐sensitive (D6) and chloroquine‐resistant (W2) strains of Plasmodium falciparum. Most of the spiro[piperidine‐4,3′‐tetraoxanes] exhibited moderate to good antimalarial activities, and two compounds have shown good antimalarial activity with IC50 values in the range of 0.30 to 0.70 μM against both the strains with high selectivity index and no cytotoxicity towards mammalian kidney cell line.  相似文献   

6.
The structures and energetics of eight substituted bis(thiocarbonyl)disulfides (RCS2)2, their associated radicals RCS2., and their coordination compounds with a lithium cation have been studied at the G3X(MP2) level of theory for R=H, Me, F, Cl, OMe, SMe, NMe2, and PMe2. The effects of substituents on the dissociation of (RCS2)2 to RCS2. were analyzed using isodesmic stabilization reactions. Electron‐donating groups with an unshared pair of electrons have a pronounced stabilization effect on both (RCS2)2 and RCS2.. The S? S bond dissociation enthalpy of tetramethylthiuram disulfide (TMTD, R=NMe2) is the lowest in the above series (155 kJ mol?1), attributed to the particular stability of the formed Me2NCS2. radical. Both (RCS2)2 and the fragmented radicals RCS2. form stable chelate complexes with a Li+ cation. The S? S homolytic bond cleavage in (RCS2)2 is facilitated by the reaction [Li(RCS2)2]++Li+→2 [Li(RCS2)].+. Three other substituted bis(thiocarbonyl) disulfides with the unconventional substituents R=OSF5, Gu1, and Gu2 have been explored to find suitable alternative rubber vulcanization accelerators. Bis(thiocarbonyl)disulfide with a guanidine‐type substituent, (Gu1CS2)2, is predicted to be an effective accelerator in sulfur vulcanization of rubber. Compared to TMTD, (Gu1CS2)2 is calculated to have a lower bond dissociation enthalpy and smaller associated barrier for the S? S homolysis.  相似文献   

7.
Three new patterns of reactivity of rare‐earth metal methylidene complexes have been established and thus have resulted in access to a wide variety of imido rare‐earth metal complexes [L3Ln32‐Me)33‐Me)(μ ‐ NR)] (L=[PhC(NC6H3iPr2‐2,6)2]?; R=Ph, Ln=Y ( 2 a ), Lu ( 2 b ); R=2,6‐Me2C6H3, Ln=Y ( 3 a ), Lu ( 3 b ); R=p‐ClC6H4, Ln=Y ( 4 a ), Lu ( 4 b ); R=p‐MeOC6H4, Ln=Y ( 5 a ), Lu ( 5 b ); R=Me2CHCH2CH2, Ln=Y ( 6 a ), Lu ( 6 b )) and [{L3Lu32‐Me)33‐Me)}2(μ ‐ NR′N)] (R′=(CH2)6 ( 7 b ), (C6H4)2 ( 8 b )). Complex 2 b was treated with an excess of CO2 to give the corresponding carboxylate complex [L3Lu3(μ‐η11‐O2CCH3)3(μ‐η12‐O2C‐CH3)(μ‐η112‐O2CNPh)] ( 9 b ) easily. Complex 2 a could undergo the selective μ3‐Me abstraction reaction with phenyl acetylene to give the mixed imido/alkynide complex [L3Y32‐Me)33‐η113‐NPh)(μ3‐C?CPh)] ( 10 a ) in high yield. Treatment of 2 with one equivalent of thiophenol gave the selective μ3‐methyl‐abstracted products [L3Ln32‐Me)33‐η113‐NPh)(μ3‐SPh)] (Ln=Y ( 11 a ); Lu ( 11 b ). All new complexes have been characterized by elemental analysis, NMR spectroscopy, and most of the structures confirmed by X‐ray diffraction.  相似文献   

8.
A new and efficient synthesis of 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives by a one‐pot three‐component reaction between primary amine, dialkyl acetylenedicarboxylate, and itaconic anhydride (=3,4‐dihydro‐3‐methylidenefuran‐2,5‐dione) is reported. The reaction was performed without catalyst and under solvent‐free conditions with excellent yields. Notably, the ready availability of the starting materials, and the high level of practicability of the reaction and workup make this approach an attractive complementary method to access to unknown 2‐[1‐alkyl‐5,6‐bis(alkoxycarbonyl)‐1,2,3,4‐tetrahydro‐2‐oxopyridin‐3‐yl]acetic acid derivatives. The structures were corroborated spectroscopically (IR, 1H‐ and 13C‐NMR, and EI‐MS) and by elemental analyses. A plausible mechanism for this type of domino Michael addition? cyclization reaction is proposed (Scheme 2).  相似文献   

9.
[Fe]‐hydrogenase is a newly characterized type of hydrogenase. This enzyme heterolytically splits hydrogen in the presence of a natural substrate. The active site of the enzyme contains a mono‐iron complex with intriguing iron? acyl ligation. Several groups have recently developed iron? acyl complexes as synthetic models of [Fe]‐hydrogenase. This Focus Review summarizes the studies of this enzyme and its model compounds, with an emphasis on our own research in this area.  相似文献   

10.
11.
Ab initio molecular orbital and DFT calculations have been carried out for three most stable dimers of parent nitrosamine (NA) in order to elucidate the structures and energetics of the dimers. The structures were optimized using HF, B3LYP, and MP2 methods with 6‐311+G(d,p) and 6‐311++G(2d,2p) basis sets. At the optimized geometries obtained at MP2/6‐311++G(2d,2p) level of theory, the energies were evaluated at QCISD/aug‐cc‐pVDZ and CCSD/aug‐cc‐pVDZ levels. The most stable dimer has two N? H···O?N hydrogen bonds and the least stable dimer has two N? H···N?O hydrogen bonds. The natural bond orbital analysis showed that the lpO(N) → BD*(N? N) and lpO(N) → BD*(N? Hb) interactions play a decisive role in the stabilization of the NH···O(N) hydrogen bonds in dimers. The atoms in molecules results reveal that the intermolecular N? H···O(N) H‐bonds in dimers have electrostatic character. © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

12.
13.
14.
Reactions of the zinc(I) complex [Zn2(Mesnacnac)2] (Mesnacnac=[(2,4,6‐Me3C6H2)NC(Me)]2CH) with solid K3Bi2 dissolved in liquid ammonia yield crystals of the compound K4[ZnBi2]⋅(NH3)12 ( 1 ), which contains the molecular, linear heteroatomic [Bi Zn Bi]4− polyanion ( 1 a ). This anion represents the first example of a three‐atomic molecular ion of metal atoms being iso(valence)‐electronic to CO2 and being synthesized in solution. The analogy of the discrete [Bi Zn Bi]4− anion and the polymeric [(ZnBi4/2)4−] unit to monomeric CO2 and polymeric SiS2 is rationalized.  相似文献   

15.
1,3‐Enynes containing allylic hydrogens cis to the alkyne function as three‐carbon components in rhodium(III)‐catalyzed, all‐carbon [3+3] oxidative annulations to produce spirodialins. The proposed mechanism of these reactions involves the alkenyl‐to‐allyl 1,4‐rhodium(III) migration.  相似文献   

16.
The mechanism of [{RuCl2(p‐cymene)}2]‐catalyzed oxidative annulations of isoquinolones with alkynes was investigated in detail. The first step is an acetate‐assisted C? H bond activation process to form cyclometalated compounds. Subsequent mono‐alkyne insertion of the Ru? C bonds of the cyclometalated compounds then takes place. Finally, oxidative coupling of the C? N bond of the insertion compounds occurs to afford Ru0 sandwich complexes that undergo oxidation to regenerate the catalytically active RuII complex with the copper oxidant and release the desired dibenzo[a,g]quinolizin‐8‐one derivatives. All of the relevant intermediates were fully characterized and determined by single crystal X‐ray diffraction analysis. The [{RuCl2(p‐cymene)}2]‐catalyzed C? H bond functionalization of isoquinolones with alkynes to synthesize dibenzo[a,g]quinolizin‐8‐one derivatives through C? H/N? H activation was also demonstrated.  相似文献   

17.
18.
In this article, the binding energies of 16 antiparallel and parallel β‐sheet models are estimated using the analytic potential energy function we proposed recently and the results are compared with those obtained from MP2, AMBER99, OPLSAA/L, and CHARMM27 calculations. The comparisons indicate that the analytic potential energy function can produce reasonable binding energies for β‐sheet models. Further comparisons suggest that the binding energy of the β‐sheet models might come mainly from dipole–dipole attractive and repulsive interactions and VDW interactions between the two strands. The dipole–dipole attractive and repulsive interactions are further obtained in this article. The total of N? H···H? N and C?O···O?C dipole–dipole repulsive interaction (the secondary electrostatic repulsive interaction) in the small ring of the antiparallel β‐sheet models is estimated to be about 6.0 kcal/mol. The individual N? H···O?C dipole–dipole attractive interaction is predicted to be ?6.2 ± 0.2 kcal/mol in the antiparallel β‐sheet models and ?5.2 ± 0.6 kcal/mol in the parallel β‐sheet models. The individual Cα? H···O?C attractive interaction is ?1.2 ± 0.2 kcal/mol in the antiparallel β‐sheet models and ?1.5 ± 0.2 kcal/mol in the parallel β‐sheet models. These values are important in understanding the interactions at protein–protein interfaces and developing a more accurate force field for peptides and proteins. © 2009 Wiley Periodicals, Inc. J Comput Chem 2010  相似文献   

19.
A new unsymmetrical geminal dianion that contained both a phosphine oxide moiety and a phosphine sulfide moiety has been synthesized. Its reactivity towards RuII was explored, which led to the formation of a highly reactive carbene complex that evolved at room temperature to yield a kinetic orthometalated RuII complex through C? H activation of the phenyl group of the phosphine oxide moiety. This insertion was found to be thermally reversible and a second C? H insertion occurred at a phenyl group of the phosphine sulfide moiety to form the thermodynamic orthometalated RuII complex in a diastereospecific manner. DFT calculations fully rationalized the experimental findings in terms of the relative energies of the kinetic and thermodynamic products and allowed the mechanism of this process to be fully understood.  相似文献   

20.
A crossed ‘torch' structure and a short Au⋅⋅⋅Au contact was established by X‐ray analysis for the dimeric complex [Au(pz)(PPh3)]2 (pz=3,5‐disubstituted pyrazolato, RCnH2n+1 O C6H4, n=4; 1 ). The complex is a representative member of a new well‐characterized family of derivatives containing the pyrazolato ligand in an uncommon monodentate coordination form. In addition, 1 is luminescent in the solid state at 77 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号