首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
压电压磁复合材料中界面裂纹对弹性波的散射   总被引:5,自引:1,他引:4  
利用Schmidt方法分析了压电压磁复合材料中可导通界面裂纹对反平面简谐波的散射问题.经过富里叶变换得到了以裂纹面上的间断位移为未知变量的对偶积分方程A·D2在求解对偶积分方程的过程中,裂纹面上的间断位移被展开成雅可比多项式的形式.数值模拟分析了裂纹长度、波速和入射波频率对应力强度因子、电位移强度因子、磁通量强度因子的影响A·D2从结果中可以看出,压电压磁复合材料中可导通界面裂纹的反平面问题的应力奇异性形式与一般弹性材料中的反平面问题应力奇异性形式相同.  相似文献   

2.
采用Schmidt方法分析压电材料中非对称平行的双可导通裂纹的断裂性能.利用Fourier变换使问题的求解转换为求解两对以裂纹面位移之差为未知变量的对偶积分方程.为了求解对偶积分方程,直接把裂纹面位移差函数展开成Jacobi多项式形式.最终得到了裂纹的应力强度因子与电位移强度因子之间的关系.数值结果表明,应力强度因子和电位移强度因子与裂纹间的距离、裂纹的几何尺寸有关;与不可导通裂纹有关结果相比,可导通裂纹的电位移强度因子远小于相应问题不可导通裂纹的电位移强度因子.同时可以发现裂纹间的“屏蔽”效应也在压电材料中出现.  相似文献   

3.
4.
椭圆孔边裂纹对SH波的散射及其动应力强度因子   总被引:2,自引:0,他引:2  
采用复变函数和Green函数方法求解具有任意有限长度的椭圆孔边上的径向裂纹对SH波的散射和裂纹尖端处的动应力强度因子.取含有半椭圆缺口的弹性半空间水平表面上任意一点承受时间谐和的出平面线源荷载作用时的位移解作为Green函数,采用裂纹“切割”方法,并根据连续条件建立起问题的定解积分方程,得到动应力强度因子的封闭解答.讨论了孔洞的存在对动应力强度因子的影响.  相似文献   

5.
In this paper, the basic solution of two collinear cracks in a piezoelectric material plane subjected to a uniform tension loading is investigated by means of the non-local theory. Through the Fourier transform, the problem is solved with the help of two pairs of integral equations, in which the unknown variables are the jumps of displacements across the crack surfaces. To solve the integral equations, the jumps of displacements across the crack surfaces are directly expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the interaction of two cracks, the materials constants and the lattice parameter on the stress field and the electric displacement field near crack tips. Unlike the classical elasticity solution, it is found that no stress and electric displacement singularities are present at crack tips. The non-local elastic solutions yield a finite hoop stress at the crack tip, thus allowing us to using the maximum stress as a fracture criterion in piezoelectric materials.  相似文献   

6.
Based on the Stroh-type formalism for anti-plane deformation, the fracture mechanics of four cracks originating from an elliptical hole in a one-dimensional hexagonal quasicrystal are investigated under remotely uniform anti-plane shear loadings. The boundary value problem is reduced to Cauchy integral equations by a new mapping function, which is further solved analytically. The exact solutions in closed-form of the stress intensity factors for mode III crack problem are obtained. In the limiting cases, the well known results can be obtained from the present solutions. Moreover, new exact solutions for some complicated defects including three edge cracks originating from an elliptical hole, a half-plane with an edge crack originating from a half-elliptical hole, a half-plane with an edge crack originating from a half-circular hole are derived. In the absence of the phason field, the obtainable results in this paper match with the classical ones.  相似文献   

7.
Special representations of the solution are constructed and solving integral equations of the problem of the elastic equilibrium of a finite anisotropic plate weakened by an elliptical hole or rectilinear crack are derived. The absence of the unknown function for the boundary of the internal hole (crack) makes it possible to propose an effective algorithm for the problem's numeric solution. The results of calculations, which illustrate the effect of the external boundary and material anisotropy on the stress distribution near loaded holes of different sizes, are presented. Direct comparison with the finite-element method indicates that the proposed algorithm significantly lowers the amount of input data, the computer time, and the required volume of memory with comparable accuracy.Novosibirsk. Translated from Teoreticheskaya i Prikladnaya Mekhanika, No. 21, pp. 45–51, 1990.  相似文献   

8.
利用Schmidt方法研究压电材料Ⅰ-型界面裂纹问题   总被引:1,自引:1,他引:0  
在一定的假设条件下,即不考虑界面裂纹尖端处裂纹面的相互叠入现象,研究了压电材料Ⅰ-型界面裂纹问题.利用Fourier变换使问题的求解转换为求解两对对偶积分方程.进而把裂纹表面位移差展开成Jacobi多项式形式来求解对偶积分方程.结果表明裂纹尖端应力场和电位移场的奇异性与均匀材料裂纹问题的奇异性相同.当上下半平面材料相同时,解可以退化而得到其精确解.  相似文献   

9.
压电梁的多项式解(Ⅰ)——若干精确解   总被引:4,自引:2,他引:2  
从正交各向异性压电介质平面问题,对于材料3个特征根互不相等情况下,以3个拟调和函数表达位移、电势、应力和电位移的通解出发,利用调和多项式的显式表达式,结合试凑法,给出了平面压电梁的一系列精确解,包括刚体平动、刚体转动、均匀电势、均匀拉伸、均匀电位移、纯剪切、纯弯曲和两端自由压电梁上下表面作用常电势情况下的精确解.  相似文献   

10.
The problem of the antiplane deformation of an elastic cylinder with a multiconnected finite or infinite section, bounded by a system of closed curves that can have corner points, is examined. Forces or displacements are given on the whole boundary of the body. The problem is reduced to an integral equation whose kernel has strong stationary singularities at the corner points. Results of an investigation of the solvability of this equation and the smoothness of its solution are presented. A procedure for the numerical solution of the integral equation is described. A space with a prismatic hole of rectangular section or a rigid inclusion subjected to a uniform tangential force at infinity is considered as an example. The generalized stress intensity factors are calculated.  相似文献   

11.
本文采用Muskhclishvili弹性力学的复变函数和边界配位方法对不同形状孔口双边裂纹问题进行了研究,计算了圆孔、椭圆孔、矩形孔、菱形孔等不同形状孔口双边裂纹,以及Ⅰ型和复合型等不同类型断裂试件的应力强度因子,本文方法简单方便,精度较高,与某些已有计算结果的问题比较,本文方法所得的结果是令人满意的.同时,本方法可以应用于不同几何形状和加载条件下的孔口双边裂纹有限大板的计算,是解这一类问题的一致有效方法.  相似文献   

12.
A numerical boundary integral scheme is proposed for the solution of the system of field equations of plane, linear elasticity in stresses for homogeneous, isotropic media in the domain bounded by an ellipse under mixed boundary conditions. The stresses are prescribed on one half of the ellipse, while the displacements are given on the other half. The method relies on previous analytical work within the Boundary Integral Method [1], [2].The considered problem with mixed boundary conditions is replaced by two subproblems with homogeneous boundary conditions, one of each type, having a common solution. The equations are reduced to a system of boundary integral equations, which is then discretized in the usual way and the problem at this stage is reduced to the solution of a rectangular linear system of algebraic equations. The unknowns in this system of equations are the boundary values of four harmonic functions which define the full elastic solution inside the domain, and the unknown boundary values of stresses or displacements on proper parts of the boundary.On the basis of the obtained results, it is inferred that the tangential stress component on the fixed part of the boundary has a singularity at each of the two separation points, thought to be of logarithmic type. A tentative form for the singular solution is proposed to calculate the full solution in bulk directly from the given boundary conditions using the well-known Boundary Collocation Method. It is shown that this addition substantially decreases the error in satisfying the boundary conditions on some interval not containing the singular points.The obtained results are discussed and boundary curves for unknown functions are provided, as well as three-dimensional plots for quantities of practical interest. The efficiency of the used numerical schemes is discussed, in what concerns the number of boundary nodes needed to calculate the approximate solution.  相似文献   

13.
Analytical solutions to the electromagnetic field in a thinconductive plate with an elliptical hole are derived by meansof complex potentials and conformal mapping techniques. Thesteady-state current field in a thin conductive plate is twodimensional (2D) and is explored by a standard complex variabletechnique. The current is disturbed around the elliptical hole,and produces a three dimensional magnetic field. In this case,using the complex variable method to solve the real magneticfield can be challenging. The magnetic boundary conditions takedifferent forms for the soft ferromagnetic and the para- ordiamagnetic materials under consideration. A simplified analysistaking account of the magnitude of the magnetic permeabilityof the magnetic material and air surrounding the material isproposed to reduce the magnetic field in a thin plate to 2Dcalculations. The magnetic field distributions are derived foreach material and the equations of the magnetic components atthe tip of elliptical hole are presented.  相似文献   

14.
A boundary integral method earlier proposed by two of the authors is used to solve a problem of uncoupled magnetothermoelasticity for an infinite, elliptical cylindrical conductor carrying a steady axial, uniform electric current. The cylinder is placed in a variable ambient temperature and is allowed to exchange heat with the surrounding medium.  相似文献   

15.
The focus of this paper is on the analytical buckling solutions of piezoelectric cylindrical nanoshells under the combined compressive loads and external voltages. To capture the small-scale characteristics of the nanostructures, the constitutive equations with the coupled nonlocal and surface effects are adopted within the framework of Reddy's higher-order shell theory. The governing equations involving the displacements and induced piezoelectric field are solved by employing the separation of variables. The derived accurate solutions conclude that bucking critical stresses should go down rapidly while the nonlocal effects reach a certain level. With the enhancing surface effects, the stability of piezoelectric cylindrical nanoshells can be improved significantly. Meanwhile, the induced electric field also plays an important role in elevating the buckling critical stresses. For the nanoshells with remarkable nonlocal effects, boundary conditions, shell length and radius have little influence on the buckling solutions. The detailed effects of the boundary conditions, geometric parameters, material properties and applied voltages are discussed.  相似文献   

16.
本文提出了一组复应力函数,采用边界配位方法对不同形状孔口(包括圆、椭圆、矩形及菱形孔口)的单边裂纹平板的应力强度因子进行了计算.计算结果表明,对长度和宽度远大于孔口和裂纹几何尺寸的试件,配位法与用其他方法所得的无限大板含圆或椭圆孔边裂纹问题的解符合得很好.同时,对其他孔口问题,特别是有限大板情形,本文给出了一系列计算结果.本文所提出的函数及计算过程可以应用于任意形状孔口单边裂纹平板的计算.  相似文献   

17.
Wave propagation in porous media is an important topic, e.g. in geomechanics or the oil-industry. We formulate a linear system of coupled partial differential equations based on Biot's theory with the solid displacements and the pore pressure as the primary unknowns. To solve this system of coupled partial differential equations in a semi-infinite homogeneous domain the BEM (Boundary element method) is especially suitable. Starting from a representation formula a system of two boundary integral equations is derived. These boundary integral equations are used to solve related boundary value problems via a direct approach. Coercivity of the resulting bilinear form is shown, from which unique solvability of the variational formulation follows from injectivity. Using these results we derive the unique solvability of the related boundary integral equations. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
This paper studies the electro-mechanical shear buckling analysis of piezoelectric nanoplate using modified couple stress theory with various boundary conditions.In order to be taken electric effects into account, an external electric voltage is applied on the piezoelectric nanoplate. The simplified first order shear deformation theory (S-FSDT) has been employed and the governing differential equations have been obtained using Hamilton's principle and nonlinear strains of Von-Karman. The modified couple stress theory has been applied to considering small scale effects. An analytical approach was developing to obtain exact results with various boundary conditions. After all, results have been presented by change in some parameters, such as; aspect ratio, effect of various boundary conditions, electric voltage and length scale parameter influences. At the end, results showed that the effect of external electric voltage on the critical shear load occurring on the piezoelectric nanoplate is insignificant.  相似文献   

19.
The present study is devoted to application of boundary integral equations to the problem of a linear crack located on the bimaterial interface under time-harmonic loading. Using the Somigliana dynamic identity the system of boundary integral equations for displacements and tractions at the interface is derived. For the numerical solution the collocation method with piecewise constant approximation on each linear continuous boundary elements is used. The distributions of the displacements are computed for different values of the frequency of the incident tension-compression wave. Results are compared with static ones.  相似文献   

20.
含椭圆孔或裂纹压电介质平面问题的基本解   总被引:3,自引:0,他引:3  
应用复变函数的方法,并基于精确的电边界条件,导出了含一椭圆孔或裂纹的横观各向同性压电体在任意集中力和集中电荷作用下的复变函数解,即Cren函数解·叠加该解,得到了裂纹表面作用任意集中载荷或分布载荷时的一般解·这些解不但澄清了从前文献中一些不合理的结果,同时也为应用边界元法求解更复杂的压电介质断裂力学问题提供了基本解·  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号