首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
The title compound, C21H28O4, has a 4‐acetoxy substituent positioned on the steroid α face. The six‐membered ring A assumes a conformation intermediate between 1α,2β‐half chair and 1α‐sofa. A long Csp3—Csp3 bond is observed in ring B and reproduced in quantum‐mechanical ab initio calculations of the isolated molecule using a molecular‐orbital Hartree–Fock method. Cohesion of the crystal can be attributed to van der Waals interactions and weak C—H...O hydrogen bonds.  相似文献   

2.
Derivatives of 4‐hydroxypyrimidine are an important class of biomolecules. These compounds can undergo keto–enol tautomerization in solution, though a search of the Cambridge Structural Database shows a strong bias toward the 3H‐keto tautomer in the solid state. Recrystallization of 2‐amino‐5,6‐dimethyl‐4‐hydroxypyrimidine, C6H9N3O, from aqueous solution yielded triclinic crystals of the 1H‐keto tautomer, denoted form (I). Though not apparent in the X‐ray data, the IR spectrum suggests that small amounts of the 4‐hydroxy tautomer are also present in the crystal. Monoclinic crystals of form (II), comprised of a 1:1 ratio of both the 1H‐keto and the 3H‐keto tautomers, were obtained from aqueous solutions containing uric acid. Forms (I) and (II) exhibit one‐dimensional and three‐dimensional hydrogen‐bonding motifs, respectively.  相似文献   

3.
In our continuing search for potential anticancer candidates, 2‐(3‐methoxyphenyl)‐6‐pyrrolidinyl‐4‐quinazolinone ( JJC‐1 ) was selected as the lead compound. Starting 5‐pyrrolidinyl‐2‐aminobenzamide was prepared using standard methodology from 5‐chloro‐2‐nitrobenzoic acid by reaction with SOCl2, NH3, pyrrolidine, and H2. The starting benzamide then was reacted with 2‐substituted benzaldehyde or benzoyl chloride in N,N‐dimethylacetamide (DMAC) in the presence of NaHSO3 at 150 °C. Thermal cyclodehydration/dehydrogenation gave the target 6‐pyrrolidinyl‐2‐(2‐substituted phenyl)‐4‐quinazolinones ( 15–22 ). These target compounds were assayed for their cytotoxicity in vitro against six cancer cell lines, including human monocytic leukemia cells (U937), mouse monocytic leukemia cells (WEHI‐3), human hepatoma cells (HepG2, Hep3B) and human lung carcinoma cells (A549, CH27). Most of them exhibited significant cytotoxic effect toward U937 and WEHI‐3 cells, with EC50 values ranging from 0.30 to 10.10 μM. Compound 19 was investigated further for its action mechanisms. Preliminary findings indicated that compound 19 induced G2/M arrest and apoptosis on U937 cells.  相似文献   

4.
In the title compounds, C21H30O4, (I), and C23H34O4, (II), respectively, which are valuable intermediates in the synthesis of important steroid derivatives, rings A and B are cis‐(5β,10β)‐fused. The two molecules have similar conformations of rings A, B and C. The presence of the 5β,6β‐epoxide group induces a significant twist of the steroid nucleus and a strong flattening of the B ring. The different C17 substituents result in different conformations for ring D. Cohesion of the molecular packing is achieved in both compounds only by weak intermolecular interactions. The geometries of the molecules in the crystalline environment are compared with those of the free molecules as given by ab initio Roothan Hartree–Fock calculations. We show in this work that quantum mechanical ab initio methods reproduce well the details of the conformation of these molecules, including a large twist of the steroid nucleus. The calculated twist values are comparable, but are larger than the observed values, indicating a possible small effect of the crystal packing on the twist angles.  相似文献   

5.
1,3‐Enyne structural motifs are versatile building blocks in organic synthesis and occur widely in various natural products with many of them being highly active as cytotoxic macrolides and antitumour antibiotics. This article presents the crystal structure of three 1,1,4‐triphenyl‐substituted 1,3‐enynes, viz. 4‐(2‐methylphenyl)‐1,1‐diphenylbut‐1‐en‐3‐yne, C23H18 ( 1 ), 4‐(2‐methoxyphenyl)‐1,1‐diphenylbut‐1‐en‐3‐yne, C23H18O ( 2 ), and 4‐(4‐nitrophenyl)‐1,1‐diphenylbut‐1‐en‐3‐yne, C22H15NO2 ( 3 ). The benzene ring at position 4 of the but‐1‐en‐3‐yne group bears a weakly activating methyl group in compound 1 , a moderately activating methoxy group in 2 and a strongly deactivating nitro group in 3 . The crystal structures of 1 and 3 both have monoclinic symmetry, while that of 2 is orthorhombic, and all of them have one molecule in the asymmetric unit. All three compounds were investigated for their antibacterial and antifungal activities. Interestingly, enyne 2 is the only compound tested that inhibited the growth of Aspergillus niger.  相似文献   

6.
Regioselective reactions of morpholine‐1‐carbothioic acid (2‐phenyl‐3H‐quinazolin‐4‐ylidene) amide ( 1 ) with electrophiles and nucleophiles were studied. The compound ( 1 ) reacts with alkyl halides in basic medium to afford S‐substituted isothiourea derivatives, with amines to give 1,1‐disubstituted‐3‐(2‐phenyl‐3H‐quinazolin‐4‐ylidene) thioureas and l‐substituted‐3‐(2‐phenyl‐quinazolin‐4‐yl) thioureas via transami‐nation reaction. The reaction of ( 1 ) with amines in the presence of H2O2 provided N4‐disubstituted‐N'4‐(2‐phenylquinazolin‐4‐yl)morpholin‐4‐carboximidamide via oxidative desulfurization. Estimation of reactivity sites on ( 1 ) was supported using the ab initio (HF/6‐31G**) quantum chemistry calculations. The ir, 1H nmr, 13C nmr, mass spectroscopy and x‐ray identified the isolated products.  相似文献   

7.
The structures of 5‐(2‐hydroxyethyl)‐2‐[(pyridin‐2‐yl)amino]‐1,3‐thiazolidin‐4‐one, C10H11N3O2S, (I), and ethyl 4‐[(4‐oxo‐1,3‐thiazolidin‐2‐yl)amino]benzoate, C12H12N2O3S, (II), which are identical to the entries with refcodes GACXOZ [Váňa et al. (2009). J. Heterocycl. Chem. 46 , 635–639] and HEGLUC [Behbehani & Ibrahim (2012). Molecules, 17 , 6362–6385], respectively, in the Cambridge Structural Database [Allen (2002). Acta Cryst. B 58 , 380–388], have been redetermined at 130 K. This structural study shows that both investigated compounds exist in their crystal structures as the tautomer with the carbonyl–imine group in the five‐membered heterocyclic ring and an exocyclic amine N atom, rather than the previously reported tautomer with a secondary amide group and an exocyclic imine N atom. The physicochemical and spectroscopic data of the two investigated compounds are the same as those of GACXOZ and HEGLUC, respectively. In the thiazolidin‐4‐one system of (I), the S and chiral C atoms, along with the hydroxyethyl group, are disordered. The thiazolidin‐4‐one fragment takes up two alternative locations in the crystal structure, which allows the molecule to adopt R and S configurations. The occupancy factors of the disordered atoms are 0.883 (2) (for the R configuration) and 0.117 (2) (for the S configuration). In (I), the main factor that determines the crystal packing is a system of hydrogen bonds, involving both strong N—H...N and O—H...O and weak C—H...O hydrogen bonds, linking the molecules into a three‐dimensional hydrogen‐bond network. On the other hand, in (II), the molecules are linked via N—H...O hydrogen bonds into chains.  相似文献   

8.
Two isomeric pyridine‐substituted norbornenedicarboximide derivatives, namely N‐(pyridin‐2‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (I), and N‐(pyridin‐3‐yl)‐exo‐norbornene‐5,6‐dicarboximide, (II), both C14H12N2O4, have been crystallized and their structures unequivocally determined by single‐crystal X‐ray diffraction. The molecules consist of norbornene moieties fused to a dicarboximide ring substituted at the N atom by either pyridin‐2‐yl or pyridin‐3‐yl in an anti configuration with respect to the double bond, thus affording exo isomers. In both compounds, the asymmetric unit consists of two independent molecules (Z′ = 2). In compound (I), the pyridine rings of the two independent molecules adopt different conformations, i.e. syn and anti, with respect to the methylene bridge. The intermolecular contacts of (I) are dominated by C—H...O interactions. In contrast, in compound (II), the pyridine rings of both molecules have an anti conformation and the two independent molecules are linked by carbonyl–carbonyl interactions, as well as by C—H...O and C—H...N contacts.  相似文献   

9.
In the title compound, C23H34O4, which is an intermediate in the synthesis of pregnane derivatives with a modified skeleton that show potent abortion‐inducing activity, the conformation of ring B is close to half‐chair due to the presence of both the C=C double bond and the axial 5β‐methyl group. Rings A and C have conformations close to chair, while ring D has a twisted conformation around the bridgehead C—C bond. Molecules are hydrogen bonded via the hydroxyl and acetoxy groups into infinite chains. Quantum‐mechanical ab initio Roothan Hartree–Fock calculations show that crystal packing might be responsible for the low values of the angles between rings A and B, and between ring A and rings C and D, as well as for a different steric position of the methyl ketone side chain compared to the geometry of the free molecule.  相似文献   

10.
The observed structure of 1,3,4‐thiadiazolidine‐2,5‐dithione (also known as 2,5‐dimercapto‐1,3,4‐thiadiazole) has been previously reported in three different tautomeric forms including —dithiol and—dithione. This report examines the relative stability of each form and also reports synthesis and characterization of the structures of mono‐alkylated and di‐alkylated forms of 5‐mercapto‐1,3,4‐thiadiazole‐2(3H)‐thione. The methods of X‐ray crystallography, NMR spectroscopy, and ab initio electronic structure calculations were combined to understand the reactivity and structure of each compound.  相似文献   

11.
The title compounds, 17‐(1H‐indazol‐1‐yl)androsta‐5,16‐dien‐3β‐ol, (I), and 17‐(2H‐indazol‐2‐yl)androsta‐5,16‐dien‐3β‐ol, (II), both C26H32N2O, have an indazole substituent at the C17 position. The six‐membered B ring of each compound assumes a half‐chair conformation. A twist of the steroid skeleton is observed and reproduced in quantum‐mechanical ab initio calculations of the isolated molecule using a molecular orbital Hartree–Fock method. In the 1H‐indazole derivative, (I), the molecules are joined in a head‐to‐head fashion via O—H...O hydrogen bonds, forming chains along the a axis. In the 2H‐indazole derivative, (II), the molecules are joined in a head‐to‐tail fashion with one of the N atoms of the indazole ring system acting as the acceptor. The hydrogen‐bond pattern consists of zigzag chains running along the b axis. Substituted steroids have proven to be effective in inhibiting androgen biosynthesis through coordination of the Fe atoms of some enzymes, and this study shows that indazole‐substituted steroids adopt twisted conformations that restrict their intermolecular interactions.  相似文献   

12.
In the crystal structure of 3‐amino‐1,2,4‐triazine, C3H4N4, the mol­ecules form hydrogen‐bonded chains that are almost parallel to the b axis (3.2°), and which are inclined to the a and c axes by ~21 and ~69°, respectively. The distortion of the 1,2,4‐triazine ring in the crystal is compared with gas‐phase ab initio molecular‐orbital calculations.  相似文献   

13.
In the title compound, C16H17NO3·H2O, the pyrrole ring is distorted slightly from ideal C2v symmetry. Three strong hydrogen bonds link the substituted pyrrole and water mol­ecules to form infinite chains, in which the hydrogen bonds form rings and chain patterns. Two intermolecular C—H?π interactions maintain the internal cohesion between these chains. The molecular structure differs slightly from that of the isolated mol­ecule calculated by ab initio quantum‐mechanical calculations. In the latter model, the non‐H substituent atoms share the plane of the pyrrole ring, except for the phenyl group, which lies almost perpendicular to this plane.  相似文献   

14.
The oxidation of the trans,cis‐( 2 ) and trans,trans‐epoxides ( 3 ) of differently substituted (Z)‐3‐arylidene‐1‐thioflavan‐4‐ones ( 1 ) with dimethyldioxirane (DMD) yielded the appropriate sulfoxides ( 4, 5 ) and sulfones ( 6, 7 ). The structures were elucidated by the extensive application of one‐ and two‐dimensional 1H, 13C and 17O NMR spectroscopy. The conformational analysis was achieved by the application of 3J(C,H) coupling constants, NOESY responses and ab initio calculations. The preferred ground‐state conformers (twisted envelope‐A, twisted envelope‐B for 6 and twisted envelope‐A, envelope‐B for 7 ) were obtained as global minima of the theoretical ab initio MO study and also the examination of the 17O and 13C chemical shifts, calculated for the global minima structures of the sulfone isomers by the GIAO method. Analogous results, obtained for the sulfoxide isomers ( 4, 5 ), not only led to the preferred conformers but also gave evidence for the trans arrangement of the 2‐Ph group and the oxygen atom of the S?O group. Chemical shift differences between the isomers, sulfoxides and sulfones were corroborated by ab initio calculations of the anisotropic effects of the oxirane ring and the S?O and SO2 groups. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

15.
The mol­ecule of the title compound, C19H17N5S, adopts a Z configuration about the azomethine bond and exists as the thione tautomer. The overall structure of the mol­ecule is distributed in four different planes. An intramolecular hydrogen bond involving the pyridyl N atom and the H atom attached to the hydrazine N atom leads to the formation of a six‐membered ring.  相似文献   

16.
The mol­ecule of the title compound, C23H40O4Si2, features an approximate non‐crystallographic C2 symmetry axis. The aldehyde group is disordered over two positions with similar occupancies. The geometry of the isolated mol­ecule was studied by ab initio quantum mechanical calculations employing a mol­ecular orbital Hartree–Fock method. The calculations reproduce well the equilibrium geometry but slightly overestimate the value of the Si—O bond lengths of the trioxadisilepine ring.  相似文献   

17.
Chemical shift assignment of seven N‐substituted 6‐(4‐methoxyphenyl)‐7H‐pyrrolo[2, 3‐d]pyrimidin‐4‐amines, six of which are fluorinated, have been performed based on 1H, 13C, 19F, and 2D COSY, HMBC and HSQC experiments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
In the structures of the two enantiopure diastereoisomers of the title compound, C20H18ClN3O, which crystallize in different space groups, the molecules are very similar as far as bond distances and angles are concerned, but more substantial differences are observed in some torsion angles. The crystal structures of both molecules can be described as zigzag layers along the c axis. The packing is stabilized by hydrogen‐bond interactions of N—H...O, C—H...Cl and C—H...π types for 2‐[(R)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, and of N—H...N, C—H...O and C—H...π types for 2‐[(S)‐2‐chloro‐3‐quinolyl]‐2‐[(R)‐1‐(4‐methoxyphenyl)ethylamino]acetonitrile, resulting in the formation of two‐ and three‐dimensional networks.  相似文献   

19.
The reaction of 4‐amino‐6‐methyl‐1,2,4‐triazine‐3‐thione‐5‐one, HAMTTO, with silver (I) nitrate in methanol led under deprotonation to the polymeric compound [(AMTTO)Ag]n. The coordination polymer {[Ag(HAMTTO)]ClO4}n ( 1 ) is synthesized from the reaction of the latter polymeric compound with perchloric acid. Both compounds were characterized by elemental analysis and IR spectroscopy. Single‐crystal X‐ray diffraction studies on compound 1 showed that HAMTTO acts as a bidentate ligand and chelates the silver atom via its hydrazine nitrogen atom and its sulfur atom. Crystal data for 1 at ?90 °C: space group P21, Z = 2, a = 629.3(1), b = 748.7(1), c = 1071.7(1) pm, β = 98.28(1)°, R1 = 0.0533.  相似文献   

20.
The reaction of the organolithium derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu‐C6H2}Li ( 1 ‐Li) with [Ph3C]+[PF6] gave the substituted biphenyl derivative 4‐[(C6H5)2CH]‐4′‐[tert‐Bu]‐2′, 6′‐[P(O)(OEt)2]2‐1, 1′‐biphenyl ( 5 ) which was characterized by 1H, 13C and 31P NMR spectroscopy and single crystal X‐ray analysis. Ab initio MO‐calculations reveal the intramolecular O···C distances in 5 of 2.952(4) and 2.988(5)Å being shorter than the sum of the van der Waals radii of oxygen and carbon to be the result of crystal packing effects. Also reported are the synthesis and structure of the bromine‐substituted derivative {2, 6‐[P(O)(OEt)2]2‐4‐tert‐Bu]C6H2}Br ( 9 ) and the structure of the protonated ligand 5‐tert‐Bu‐1, 3‐[P(O)(OEt)2]2C6H3 ( 1 ‐H). The structures of 1 ‐H, 5 , and 9 are compared with those of related metal‐substituted derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号