首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deprotonation of the yttrium–arsine complex [Cp′3Y{As(H)2Mes}] ( 1 ) (Cp′=η5‐C5H4Me, Mes=mesityl) by nBuLi produces the μ‐arsenide complex [{Cp′2Y[μ‐As(H)Mes]}3] ( 2 ). Deprotonation of the As? H bonds in 2 by nBuLi produces [Li(thf)4]2[{Cp′2Y(μ3‐AsMes)}3Li], [Li(thf)4]2[ 3 ], in which the dianion 3 contains the first example of an arsinidene ligand in rare‐earth metal chemistry. The molecular structures of the arsine, arsenide, and arsinidene complexes are described, and the yttrium–arsenic bonding is analyzed by density functional theory.  相似文献   

2.
Reactions of R2SbH with BuLi at ?70 °C in tetrahydrofuran (thf) lead to [R2SbLi(thf)3] [R = Ph ( 1 ) or R = Mes ( 2 )]. The antimonides [tBu2SbK(pmdeta)] ( 3 ) (pmdeta = pentamethyldiethylenetriamine), [Li(tmeda)2][tBu4Sb3]·benzene ( 4 ) (tmeda = tetramethylethylenediamine), and [tBu4Sb3Na(tmeda, thf)] ( 5 ) result from the reduction of cyclo‐(tBuSb)4 by Li, Na, or K with pmdeta or tmeda in thf. The primary stibanes RSbH2 [R = Mes ( 6 ), 2‐(Me2NCH2)C6H2 ( 7 )] are synthesized by reactions of RSbCl2 with LiAlH4. PhSbH2 reacts with BuLi, and tmeda in toluene to give [Sb7Li3(tmeda)3]·toluene ( 8 ). [Sb7Na3(pmdeta)3]·toluene ( 9 ) is obtained from PhSbH2, Na in liqu. NH3, pmdeta and toluene. Crystal structures are reported for 1 – 5 and 9 .  相似文献   

3.
A new family of Y4/M2 and Y5/M heterobimetallic rare‐earth‐metal/d‐block‐transition‐metal? polyhydride complexes has been synthesized. The reactions of the tetranuclear yttrium? octahydride complex [{Cp′′Y(μ‐H)2}4(thf)4] (Cp′′=C5Me4H, 1‐C5Me4H ) with one equivalent of Group‐6‐metal? pentahydride complexes [Cp*M(PMe3)H5] (M=Mo, W; Cp*=C5Me5) afforded pentanuclear heterobimetallic Y4/M? polyhydride complexes [{(Cp′′Y)4(μ‐H)7}(μ‐H)4MCp*(PMe3)] (M=Mo ( 2 a ), W ( 2 b )). UV irradiation of compounds 2 a , b in THF gave PMe3‐free complexes [{(Cp′′Y)4(μ‐H)6(thf)2}(μ‐H)5MCp*] (M=Mo ( 3 a ), W ( 3 b )). Compounds 3 a , b reacted with one equivalent of [Cp*M(PMe3)H5] to afford hexanuclear Y4/M2 complexes [{Cp*M(μ‐H)5}{(Cp′′Y)4(μ‐H)5}{(μ‐H)4MCp*(PMe3)}] (M=Mo ( 4 a ), W ( 4 b )). UV irradiation of compounds 4 a , b provided the PMe3‐free complexes [(Cp′′Y)4(μ‐H)4{(μ‐H)5MCp*}2] (M=Mo ( 5 a ), W ( 5 b )). C5Me4Et‐ligated analogue [(Cp′′Y)4(μ‐H)4{(μ‐H)5Mo(C5Me4Et)}2] ( 5 a′ ) was obtained from the reaction of 1‐C5Me4H with [(C5Me4Et)Mo(PMe3)H5]. On the other hand, the reaction of pentanuclear yttrium? decahydride complex [{(C5Me4R)Y(μ‐H)2}5(thf)2] ( 1‐C5Me5 : R=Me; 1‐C5Me4Et : R=Et) with [Cp*M(PMe3)H5] gave the hexanuclear heterobimetallic Y5/M? polyhydride complexes [({(C5Me4R)Y}5(μ‐H)8)(μ‐H)5MCp*] ( 6 a : M=Mo, R=Me; 6 a′ : M=Mo, R=Et; 6 b : M=W, R=Me). Compound 5 a released two molecules of H2 under vacuum to give [(Cp′′Y)4(μ‐H)2{(μ‐H)4MoCp*}2] ( 7 ). In contrast, compound 6 a lost one molecule of H2 under vacuum to yield [{(Cp*Y)5(μ‐H)7}(μ‐H)4MoCp*] ( 8 ). Both compounds 7 and 8 readily reacted with H2 to regenerate compounds 5 a and 6 a , respectively. The structures of compounds 4 a , 5 a′ , 6 a′ , 7 , and 8 were determined by single‐crystal X‐ray diffraction.  相似文献   

4.
A series of rare‐earth‐metal–hydrocarbyl complexes bearing N‐type functionalized cyclopentadienyl (Cp) and fluorenyl (Flu) ligands were facilely synthesized. Treatment of [Y(CH2SiMe3)3(thf)2] with equimolar amount of the electron‐donating aminophenyl‐Cp ligand C5Me4H‐C6H4o‐NMe2 afforded the corresponding binuclear monoalkyl complex [({C5Me4‐C6H4o‐NMe(μ‐CH2)}Y{CH2SiMe3})2] ( 1 a ) via alkyl abstraction and C? H activation of the NMe2 group. The lutetium bis(allyl) complex [(C5Me4‐C6H4o‐NMe2)Lu(η3‐C3H5)2] ( 2 b ), which contained an electron‐donating aminophenyl‐Cp ligand, was isolated from the sequential metathesis reactions of LuCl3 with (C5Me4‐C6H4o‐NMe2)Li (1 equiv) and C3H5MgCl (2 equiv). Following a similar procedure, the yttrium‐ and scandium–bis(allyl) complexes, [(C5Me4‐C5H4N)Ln(η3‐C3H5)2] (Ln=Y ( 3 a ), Sc ( 3 b )), which also contained electron‐withdrawing pyridyl‐Cp ligands, were also obtained selectively. Deprotonation of the bulky pyridyl‐Flu ligand (C13H9‐C5H4N) by [Ln(CH2SiMe3)3(thf)2] generated the rare‐earth‐metal–dialkyl complexes, [(η3‐C13H8‐C5H4N)Ln(CH2SiMe3)2(thf)] (Ln=Y ( 4 a ), Sc ( 4 b ), Lu ( 4 c )), in which an unusual asymmetric η3‐allyl bonding mode of Flu moiety was observed. Switching to the bidentate yttrium–trisalkyl complex [Y(CH2C6H4o‐NMe2)3], the same reaction conditions afforded the corresponding yttrium bis(aminobenzyl) complex [(η3‐C13H8‐C5H4N)Y(CH2C6H4o‐NMe2)2] ( 5 ). Complexes 1 – 5 were fully characterized by 1H and 13C NMR and X‐ray spectroscopy, and by elemental analysis. In the presence of both [Ph3C][B(C6F5)4] and AliBu3, the electron‐donating aminophenyl‐Cp‐based complexes 1 and 2 did not show any activity towards styrene polymerization. In striking contrast, upon activation with [Ph3C][B(C6F5)4] only, the electron‐withdrawing pyridyl‐Cp‐based complexes 3 , in particular scandium complex 3 b , exhibited outstanding activitiy to give perfectly syndiotactic (rrrr >99 %) polystyrene, whereas their bulky pyridyl‐Flu analogues ( 4 and 5 ) in combination with [Ph3C][B(C6F5)4] and AliBu3 displayed much‐lower activity to afford syndiotactic‐enriched polystyrene.  相似文献   

5.
A series of NCO/NCS pincer precursors, 3‐(Ar2OCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCOAr2)Br, 3a , 3b , 3c , 3d ) and 3‐(2,6‐Me2C6H3SCH2)‐2‐Br‐(Ar1N?CH)C6H3 ((Ar1NCSMe)Br, 4a and 4b ) were synthesized and characterized. The reactions of [Ar1NCOAr2]Br/ [Ar1NCSMe]Br with nBuLi and the subsequent addition of the rare‐earth‐metal chlorides afforded their corresponding rare‐earth‐metal–pincer complexes, that is, [(Ar1NCOAr2)YCl2(thf)2] ( 5a , 5b , 5c , 5d ), [(Ar1NCOAr2)LuCl2(thf)2] ( 6a , 6d ), [(Ar1NCOAr2)GdCl2(thf)2] ( 7 ), [{(Ar1NCSMe)Y(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 8 , 9 ), and [{(Ar1NCSMe)Gd(μ‐Cl)}2{(μ‐Cl)Li(thf)2(μ‐Cl)}2] ( 10 , 11 ). These diamagnetic complexes were characterized by 1H and 13C NMR spectroscopy and the molecular structures of compounds 5a , 6a , 7 , and 10 were well‐established by X‐ray diffraction analysis. In compounds 5a , 6a , and 7 , all of the metal centers adopted distorted pentagonal bipyramidal geometries with the NCO donors and two oxygen atoms from the coordinated THF molecules in equatorial positions and the two chlorine atoms in apical positions. Complex 10 is a dimer in which the two equal moieties are linked by two chlorine atoms and two Cl? Li? Cl bridges. In each part, the gadolinium atom adopts a distorted pentagonal bipyramidal geometry. Activated with alkylaluminum and borate, the gadolinium and yttrium complexes showed various activities towards the polymerization of isoprene, thereby affording highly cis‐1,4‐selective polyisoprene, whilst the NCO? lutetium complexes were inert under the same conditions.  相似文献   

6.
Yttrocene‐carboxylate complex [Cp*2Y(OOCArMe)] (Cp*=C5Me5, ArMe=C6H2Me3‐2,4,6) was synthesized as a spectroscopically versatile model system for investigating the reactivity of alkylaluminum hydrides towards rare‐earth‐metal carboxylates. Equimolar reactions with bis‐neosilylaluminum hydride and dimethylaluminum hydride gave adduct complexes of the general formula [Cp*2Y(μ‐OOCArMe)(μ‐H)AlR2] (R=CH2SiMe3, Me). The use of an excess of the respective aluminum hydride led to the formation of product mixtures, from which the yttrium‐aluminum‐hydride complex [{Cp*2Y(μ‐H)AlMe2(μ‐H)AlMe2(μ‐CH3)}2] could be isolated, which features a 12‐membered‐ring structure. The adduct complexes [Cp*2Y(μ‐OOCArMe)(μ‐H)AlR2] display identical 1J(Y,H) coupling constants of 24.5 Hz for the bridging hydrido ligands and similar 89Y NMR shifts of δ=?88.1 ppm (R=CH2SiMe3) and δ=?86.3 ppm (R=Me) in the 89Y DEPT45 NMR experiments.  相似文献   

7.
Synthesis, structure, and reactivity of carboranylamidinate‐based half‐sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μCl)Cl}2] (M=Ir, Rh; Cp*=η5‐C5Me5) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18‐electron complexes [Cp*IrCl(CabN‐DIC)] ( 1 a ; CabN‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NHiPr)]), [Cp*RhCl(CabN‐DIC)] ( 1 b ), and [Cp*RhCl(CabN‐DCC)] ( 1 c ; CabN‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NHCy)]). A series of 16‐electron half‐sandwich Ir and Rh complexes [Cp*Ir(CabN′‐DIC)] ( 2 a ; CabN′‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NiPr)]), [Cp*Ir(CabN′‐DCC)] ( 2 b , CabN′‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NCy)]), and [Cp*Rh(CabN′‐DIC)] ( 2 c ) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(CabN,S‐DIC)], [Cp*M(CabN,S‐DCC)] (M=Ir 3 a , 3 b ; Rh 3 c , 3 d ), formed through BH activation, are obtained by reaction of [{Cp*MCl2}2] with carboranylamidinate sulfides [RN?C(closo‐1,2‐C2B10H10)(NHR)]S? (R=iPr, Cy), which can be prepared by inserting sulfur into the C? Li bond of lithium carboranylamidinates. Iridium complex 1 a shows catalytic activities of up to 2.69×106 gPNB ${{\rm{mol}}_{{\rm{Ir}}}^{ - {\rm{1}}} }Synthesis, structure, and reactivity of carboranylamidinate-based half-sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μ-Cl)Cl}(2)] (M = Ir, Rh; Cp* = η(5)-C(5)Me(5)) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18-electron complexes [Cp*IrCl(Cab(N)-DIC)] (1?a; Cab(N)-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NHiPr)]), [Cp*RhCl(Cab(N)-DIC)] (1?b), and [Cp*RhCl(Cab(N)-DCC)] (1?c; Cab(N)-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10))(NHCy)]). A series of 16-electron half-sandwich Ir and Rh complexes [Cp*Ir(Cab(N')-DIC)] (2?a; Cab(N')-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NiPr)]), [Cp*Ir(Cab(N')-DCC)] (2?b, Cab(N')-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10)(NCy)]), and [Cp*Rh(Cab(N')-DIC)] (2?c) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(Cab(N,S)-DIC)], [Cp*M(Cab(N,S)-DCC)] (M = Ir 3?a, 3?b; Rh 3?c, 3?d), formed through BH activation, are obtained by reaction of [{Cp*MCl(2)}(2)] with carboranylamidinate sulfides [RN=C(closo-1,2-C(2)B(10)H(10))(NHR)]S(-) (R = iPr, Cy), which can be prepared by inserting sulfur into the C-Li bond of lithium carboranylamidinates. Iridium complex 1?a shows catalytic activities of up to 2.69×10(6) g(PNB) mol(Ir)(-1) h(-1) for the polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst. Catalytic activities and the molecular weight of polynorbornene (PNB) were investigated under various reaction conditions. All complexes were fully characterized by elemental analysis and IR and NMR spectroscopy; the structures of 1?a-c, 2?a, b; and 3?a, b, d were further confirmed by single crystal X-ray diffraction.  相似文献   

8.
The sequential reaction of the amino(trimethylsilyl)carbene complex [(CO)5W=C(NH2)C≡CSiMe3] ( 1 ) with nBuLi and [I‐Fe(CO)2Cp] affords the C(carbene)‐N bridged heterobinuclear complex [(CO)5W=C{NHFe(CO)2Cp}C≡CSiMe3] ( 2 ). Desilylation of 1 is achieved by treatment with KF in THF/MeOH. From the reaction of the resulting complex [(CO)5W=C(NH2)C≡CH] ( 3 ) with nBuLi and [I‐Fe(CO)2Cp] two binuclear WFe compounds in a ratio of approximately 1:1 are obtained: the C(carbene)‐C≡C bridged complex 4 and the C(carbene)‐N bridged complex 5 . Repetition of the deprotonation/metallation sequence yields the trinuclear WFe2 complex 6 . One Fe(CO)2Cp fragment in 6 is bonded to the amino group and the other one to the terminal carbon atom of the ethynyl substituent. The analogous reaction of 3 with nBuLi and [Br‐Ni(PMe2Ph)2Mes] gives a ca. 1:1 mixture of two heterobinuclear complexes ( 7 and 8 ). Complex 7 is bridged by the C(carbene)‐C≡C and complex 8 by the C(carbene)‐N fragment. Subsequent reaction of 7 with BuLi and [Br‐Ni(PMe2Ph)2Mes] finally affords the trinuclear WNi2 complex 9 related to 6 . The solid‐state structure of 2 is established by an X‐ray diffraction analysis. The spectroscopic data of the bi‐ and trinuclear complexes indicate electronic communication between the metal centers through the bridging group.  相似文献   

9.
Monocationic bis‐allyl complexes [Ln(η3‐C3H5)2(thf)3]+[B(C6X5)4]? (Ln=Y, La, Nd; X=H, F) and dicationic mono‐allyl complexes of yttrium and the early lanthanides [Ln(η3‐C3H5)(thf)6]2+[BPh4]2? (Ln=La, Nd) were prepared by protonolysis of the tris‐allyl complexes [Ln(η3‐C3H5)3(diox)] (Ln=Y, La, Ce, Pr, Nd, Sm; diox=1,4‐dioxane) isolated as a 1,4‐dioxane‐bridged dimer (Ln=Ce) or THF adducts [Ln(η3‐C3H5)3(thf)2] (Ln=Ce, Pr). Allyl abstraction from the neutral tris‐allyl complex by a Lewis acid, ER3 (Al(CH2SiMe3)3, BPh3) gave the ion pair [Ln(η3‐C3H5)2(thf)3]+[ER31‐CH2CH?CH2)]? (Ln=Y, La; ER3=Al(CH2SiMe3)3, BPh3). Benzophenone inserts into the La? Callyl bond of [La(η3‐C3H5)2(thf)3]+[BPh4]? to form the alkoxy complex [La{OCPh2(CH2CH?CH2)}2(thf)3]+[BPh4]?. The monocationic half‐sandwich complexes [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)(thf)2]+[B(C6X5)4]? (Ln=Y, La; X=H, F) were synthesized from the neutral precursors [Ln(η5‐C5Me4SiMe3)(η3‐C3H5)2(thf)] by protonolysis. For 1,3‐butadiene polymerization catalysis, the yttrium‐based systems were more active than the corresponding lanthanum or neodymium homologues, giving polybutadiene with approximately 90 % 1,4‐cis stereoselectivity.  相似文献   

10.
Reaction of [CpnMCl4?x] (M=V: n=x=2; M=Nb: n=1, x=0) or [Cp*TaCl4] (Cp=η5‐C5H5, Cp*=η5‐C5Me5), with [LiBH4?thf] at ?70 °C followed by thermolysis at 85 °C in the presence of [BH3?thf] yielded the hydrogen‐rich metallaboranes [(CpM)2(B2H6)2] ( 1 : M=V; 2 : M = Nb) and [(Cp*Ta)2(B2H6)2] ( 3 ) in modest to high yields. Complexes 1 and 3 are the first structurally characterized compounds with a metal–metal bond bridged by two hexahydroborate (B2H6) groups forming a symmetrical complex. Addition of [BH3?thf] to 3 results in formation of a metallaborane [(Cp*Ta)2B4H8(μ‐BH4)] ( 4 ) containing a tetrahydroborate ligand, [BH4]?, bound exo to the bicapped tetrahedral cage [(Cp*Ta)2B4H8] by two Ta‐H‐B bridge bonds. The interesting structural feature of 4 is the coordination of the bridging tetrahydroborate group, which has two B? H bonds coordinated to the tantalum atoms. All these new metallaboranes have been characterized by mass, 1H, 11B, and 13C NMR spectroscopy and elemental analysis and the structural types were established unequivocally by crystallographic analysis of 1 – 4 .  相似文献   

11.
The first cyclodiphosph(III)azane complexes of the rare‐earth elements have been synthesized. Reactions of the lithium salt cis‐[(tBuNP)2(tBuN)2{Li(thf)}2] with anhydrous yttrium trichloride or the heavier lanthanide trichlorides resulted in the corresponding cyclodiphosph(III)azane complexes [Li(thf)4][{(tBuNP)2(tBuN)2}LnCl2] (Ln=Y ( 1 a ), Ho ( 1 b ), Er ( 1 c )). The single‐crystal X‐ray structures showed that compounds 1 a – c consisted of ion pairs composed of a [Li(thf)4]+ cation and a C2v symmetric [{(tBuNP)2(tBuN)2}LnCl2]? anion. By treating cis‐[(tBuNP)2(tBuN)2{Li(thf)}2] with anhydrous SmCl3 in THF, the trimetallic complex [{(tBuNP)2(tBuN)2}SmCl3Li2(thf)4] ( 2 ) was obtained. The influence of the ionic radii of the lanthanides can be seen in the single‐crystal X‐ray structure of compound 2 , which forms a six‐membered Cl‐Li‐Cl‐Li‐Cl‐Sm metallacycle. The ring adopts a boat conformation in which one chlorine atom and the samarium atom are displaced from the Cl2Li2 least‐square plane. Heating of the metalate complexes in toluene resulted in the extrusion of lithium chloride and the formation of the neutral dimeric metal chloride complexes of the composition [(tBuNP)2(tBuN)2LnCl(thf)]2 (Ln=Y ( 3 a ), La ( 3 b ) Nd ( 3 c ), Sm ( 3 d )). Furthermore, treating 1 a with KNPh2 resulted in a lithium metalate complex of the composition [Li(thf)4][{(tBuNP)2(tBuN)2}Y(NPh2)2] ( 4 ). The coordination mode of the {(tBuNP)2(tBuN)2}2? ligand in 4 is different to that observed in 1 a – c , 2 , and 3 a – d ; instead of a symmetric η2 coordination of the ligand, a heterocubane‐type structure is observed in the solid state. The complex [(tBuNP)2(tBuN)2NdCl(thf)] ( 3 c ) was used as a Ziegler–Natta catalyst for the polymerization of 1,3‐butadiene to poly‐cis‐1,4‐butadiene. The observed activities of the Ziegler–Natta catalyst strongly depended upon the nature of the cocatalyst; in some case very high turnover rates and a cis selectivity of 93–94 % were observed.  相似文献   

12.
A series of 1,ω‐dithiaalkanediyl‐bridged bis(phenols) of the general type [OSSO]H2 with variable steric properties and various bridges were prepared. The stoichiometric reaction of the bis(phenols) 1,3‐dithiapropanediyl‐2,2′‐bis(4,6‐di‐tert‐butylphenol), 1,3‐dithiapropanediyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], rac‐2,3‐trans‐propanediyl‐1,4‐dithiabutanediyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], rac‐2,3‐trans‐butanediyl‐1,4‐dithiabutane diyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], rac‐2,3‐trans‐hexanediyl‐1,4‐dithiabutanediyl‐2,2′‐bis[4,6‐di(2‐phenyl‐2‐propyl)phenol], 1,3‐dithiapropanediyl‐2,2′‐bis[6‐(1‐methylcyclohexyl)‐4‐methylphenol] (C1, R=1‐methylcyclohexyl), and 1,4‐dithiabutanediyl‐2,2′‐bis[6‐(1‐methylcyclohexyl)‐4‐methylphenol] with rare‐earth metal silylamido precursors [Ln{N(SiHMe2)2}3(thf)x] (Ln=Sc, x=1 or Ln=Y, x=2; thf=tetrahydrofuran) afforded the corresponding scandium and yttrium bis(phenolate) silylamido complexes [Ln(OSSO){N(SiHMe2)2}(thf)] in moderate to good yields. The monomeric nature of these complexes was shown by an X‐ray diffraction study of one of the yttrium complexes. The complexes efficiently initiated the ring‐opening polymerization of rac‐ and meso‐lactide to give heterotactic‐biased poly(rac‐lactides) and highly syndiotactic poly(meso‐lactides). Variation of the ligand backbone and the steric properties of the ortho substituents affected the level of tacticity in the polylactides.  相似文献   

13.
Treatment of [K(BIPMMesH)] (BIPMMes={C(PPh2NMes)2}2?; Mes=C6H2‐2,4,6‐Me3) with [UCl4(thf)3] (1 equiv) afforded [U(BIPMMesH)(Cl)3(thf)] ( 1 ), which generated [U(BIPMMes)(Cl)2(thf)2] ( 2 ), following treatment with benzyl potassium. Attempts to oxidise 2 resulted in intractable mixtures, ligand scrambling to give [U(BIPMMes)2] or the formation of [U(BIPMMesH)(O)2(Cl)(thf)] ( 3 ). The complex [U(BIPMDipp)(μ‐Cl)4(Li)2(OEt2)(tmeda)] ( 4 ) (BIPMDipp={C(PPh2NDipp)2}2?; Dipp=C6H3‐2,6‐iPr2; tmeda=N,N,N′,N′‐tetramethylethylenediamine) was prepared from [Li2(BIPMDipp)(tmeda)] and [UCl4(thf)3] and, following reflux in toluene, could be isolated as [U(BIPMDipp)(Cl)2(thf)2] ( 5 ). Treatment of 4 with iodine (0.5 equiv) afforded [U(BIPMDipp)(Cl)2(μ‐Cl)2(Li)(thf)2] ( 6 ). Complex 6 resists oxidation, and treating 4 or 5 with N‐oxides gives [{U(BIPMDippH)(O)2‐ (μ‐Cl)2Li(tmeda)] ( 7 ) and [{U(BIPMDippH)(O)2(μ‐Cl)}2] ( 8 ). Treatment of 4 with tBuOLi (3 equiv) and I2 (1 equiv) gives [U(BIPMDipp)(OtBu)3(I)] ( 9 ), which represents an exceptionally rare example of a crystallographically authenticated uranium(VI)–carbon σ bond. Although 9 appears sterically saturated, it decomposes over time to give [U(BIPMDipp)(OtBu)3]. Complex 4 reacts with PhCOtBu and Ph2CO to form [U(BIPMDipp)(μ‐Cl)4(Li)2(tmeda)(OCPhtBu)] ( 10 ) and [U(BIPMDipp)(Cl)(μ‐Cl)2(Li)(tmeda)(OCPh2)] ( 11 ). In contrast, complex 5 does not react with PhCOtBu and Ph2CO, which we attribute to steric blocking. However, complexes 5 and 6 react with PhCHO to afford (DippNPPh2)2C?C(H)Ph ( 12 ). Complex 9 does not react with PhCOtBu, Ph2CO or PhCHO; this is attributed to steric blocking. Theoretical calculations have enabled a qualitative bracketing of the extent of covalency in early‐metal carbenes as a function of metal, oxidation state and the number of phosphanyl substituents, revealing modest covalent contributions to U?C double bonds.  相似文献   

14.
Homoleptic lanthanide metallocenes Cp′3Ln [Cp′ = methylcyclopentadienyl, Ln = Y ( 1 ), Er ( 2 ), Sm ( 3 ); Cp′ = cyclopentadienyl, Ln = Er ( 4 ) and Sm ( 5 )] have been found to be a novel type of initiators for the ring‐opening polymerization (ROP) of ε‐caprolactone (ε‐CL). Among them, complex 1 shows the highest catalytic activity for ROP of ε‐CL. In addition, a novel neutral trifluoroethoxo yttrium complex [(MeC5H4)2Y(µ‐OCH2CF3)]2 ( 6 ) has been synthesized by the reaction of 1 with trifluoroethanol in 1:1 molar ratio in toluene and characterized by single‐crystal X‐ray structural analysis. Preliminary study shows that the catalytic activity of tris(methylcyclopentadienyl)yttrium complex 1 is higher than that of bis(methylcyclopentadienyl)yttrium complex 6 . The mechanism of the present polymerization was studied by NMR spectra. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
The enantiomerically pure dibromoferrocene 3 [(Sp,Sp)‐1,1′‐dibromo‐2,2′‐di(isopropyl)ferrocene], equipped with two iPr groups in α positions, was prepared using known “Ugi amine” chemistry. Species 3 was targeted in order to gain access to new [1]ferrocenophanes ([1]FCPs) to be used as monomers for ring‐opening polymerization. The iPr groups on the sandwich unit were introduced to stabilize bridging moieties, as well as to increase solubilities of targeted metallopolymers. The planar chiral dibromide 3 can quantitatively be lithiated at 0 °C [2 equiv nBuLi, hexanes/thf (9:1), 30 min]. Salt‐metathesis reactions with respective element dichloride species gave chiral [1]FCPs with a variety of bridging moieties [ERx=Ga[2‐(Me2NCH2)C6H4] ( 4 a ), SiMe2 ( 4 b ), SntBu2 ( 4 c ), BNiPr2 ( 4 d )]. The new [1]FCPs were fully characterized including single‐crystal X‐ray analysis. The stabilizing iPr groups on the Cp rings increase the thermal stabilities of 4 b – d compared to known [1]FCPs, equipped with the same bridging moieties. All three compounds 4 b – d are volatile and could be isolated by vacuum sublimation. Our new approach to [1]FCPs has the potential to overcome many of the existing difficulties in ferrocenophane chemistry, such as limited stability of starting monomers and low solubilities of resulting polyferrocenes.  相似文献   

16.
Investigations of Sb–Sb Bond Formation Reactions in the Coordination Sphere of Transition Metals The reaction of SbCl3 with various transition metal metalates of the type K[MLn] [MLn = Ni(CO)Cp*, Fe(CO)Cp′, Co(CO)4; Cp* = η5‐C5Me5, Cp′ = η5‐C5H4Me] in the presence of [Cr(CO)5thf] have been studied. With K[Ni(CO)Cp*] and K[Fe(CO)2Cp′] the trigonal‐pyramidal complexes [(μ3‐Sb){Ni(CO)Cp*}3] ( 1 ) and [(μ3‐Sb){Fe · (CO)2Cp′}3] ( 2 ), respectively, are obtained. The reaction with K[Co(CO)4] leads to the tetrahedral cluster [Co3(CO)93‐Sb{Cr(CO)5})] ( 3 ) and the butterfly cluster [Co2(CO)6(μ‐SbCl)(μ‐SbCl{Cr(CO)5})] ( 4 ). All products are characterised by X‐ray crystal structure determination. In contrast to the corresponding [(CO)5CrPCl3] system forming P–P bonds, starting from SbCl3/[Cr(CO)5thf] does not cause a Sb–Sb bond formation.  相似文献   

17.
On the Reactivity of Titanocene Complexes [Ti(Cp′)22‐Me3SiC≡CSiMe3)] (Cp′ = Cp, Cp*) towards Benzenedicarboxylic Acids Titanocene complexes [Ti(Cp′)2(BTMSA)] ( 1a , Cp′ = Cp = η5‐C5H5; 1b , Cp′ = Cp* = η5‐C5Me5; BTMSA = Me3SiC≡CSiMe3) were found to react with iodine and methyl iodide yielding [Ti(Cp′)2(μ‐I)2] ( 2a / b ; a refers to Cp′ = Cp and b to Cp′ = Cp*), [Ti(Cp′)2I2] ( 3a / b ) and [Ti(Cp′)2(Me)I] ( 4a / b ), respectively. In contrast to 2a , complex 2b proved to be highly moisture sensitive yielding with cleavage of HCp* [{Ti(Cp*)I}2(μ‐O)] ( 7 ). The corresponding reactions of 1a / b with p‐cresol and thiophenol resulted in the formation of [Ti(Cp′)2{O(p‐Tol)}2] ( 5a / b ) and [Ti(Cp′)2(SPh)2] ( 6a / b ), respectively. Reactions of 1a and 1b with 1,n‐benzenedicarboxylic acids (n = 2–4) resulted in the formation of dinuclear titanium(III) complexes of the type [{Ti(Cp′)2}2{μ‐1,n‐(O2C)2C6H4}] (n = 2, 8a / b ; n = 3, 9a / b ; n = 4, 10a / b ). All complexes were fully characterized analytically and spectroscopically. Furthermore, complexes 7 , 8b , 9a ·THF, 10a / b were also be characterized by single‐crystal X‐ray diffraction analyses.  相似文献   

18.
Unexpected Reduction of [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2; Cp* = C5Me5) by Reaction with DBU – Molecular Structure of [(DBU)H][Cp*TaCl4] (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) [Cp*TaCl4(PH2R)] (R = But, Cy, Ad, Ph, 2,4,6‐Me3C6H2 (Mes); Cp* = C5Me5) react with DBU in an internal redox reaction with formation of [(DBU)H][Cp*TaCl4] ( 1 ) (DBU = 1,8‐diazabicyclo[5.4.0]undec‐7‐ene) and the corresponding diphosphane (P2H2R2) or decomposition products thereof. 1 was characterised spectroscopically and by crystal structure determination. In the solid state, hydrogen bonding between the (DBU)H cation and one chloro ligand of the anion is observed.  相似文献   

19.
A study of the coordination chemistry of different bis(diphenylphosphino)methanide ligands [Ph2PC(X)PPh2] (X=H, SiMe3) with Group 4 metallocenes is presented. The paramagnetic complexes [Cp2Ti{κ2P,P‐Ph2PC(X)PPh2}] (X=H ( 3 a ), X=SiMe3 ( 3 b )) have been prepared by the reactions of [(Cp2TiCl)2] with [Li{C(X)PPh2}2(thf)3]. Complex 3 b could also be synthesized by reaction of the known titanocene alkyne complex [Cp2Ti(η2‐Me3SiC2SiMe3)] with Ph2PC(H)(SiMe3)PPh2 ( 2 b ). The heterometallacyclic complex [Cp2Zr(H){κ2P,P‐Ph2PC(H)PPh2}] ( 4 aH ) has been prepared by reaction of the Schwartz reagent with [Li{C(H)PPh2}2(thf)3]. Reactions of [Cp2HfCl2] with [Li{C(X)PPh2}2(thf)3] gave the highly strained corresponding metallacycles [Cp2M(Cl){κ2P,P‐Ph2PC(X)PPh2}] ( 5 aCl and 5 bCl ) in very good yields. Complexes 3 a , 4 aH , and 5 aCl have been characterized by X‐ray crystallography. Complex 3 a has also been characterized by EPR spectroscopy. The structure and bonding of the complexes has been investigated by DFT analysis. Reactions of complexes 4 aH , 5 aCl , and 5 bCl did not give the corresponding more unsaturated heterometallacyclobuta‐2,3‐dienes.  相似文献   

20.
When activated with fluorinated borate cocatalysts the trimetallic complexes [Cp*LnMe2]3 (Ln=Y, Lu; Cp*=C5Me5) promote efficiently the formation of high-cis polybutadiene. Respective polyisoprenes instead bear much less pronounced microstructures, but reveal crosslinked products at lower polymerization temperatures. Varying the amount of cocatalyst, the emerging active species were examined by NMR spectroscopic techniques (incl. 1H DOSY). The occurrence of donor-solvent and thermally induced degradation products of the highly reactive precatalyst [Cp*YMe2]3 and derived catalyst species was revealed by the elucidation of methylidene clusters [Cp*3Y3Me4(CH2)(thf)2] and [Cp*6Y6Me4(CH2)4], as well as [(Cp*Y)2Me2(N(Me)2(C6H4)]n[B(C6F5)4]n, implying a multimetallic active species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号