首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Two lead(II) complexes of 5,6‐bis(furan‐2‐yl)‐3‐(pyridin‐2‐yl)‐1,2,4‐triazine (DFPT), namely one‐dimensional (1D) catena‐poly[[bis[5,6‐bis(furan‐2‐yl)‐3‐(pyridin‐2‐yl‐κN)‐1,2,4‐triazine‐κN2]lead(II)]‐di‐μ‐thiocyanato‐κ2N:S2S:N], [Pb(NCS)2(C16H10N4O2)2]n, 1 , and binuclear di‐μ‐dicyanamido‐κ2N1:N52N5:N1‐bis{[5,6‐bis(furan‐2‐yl)‐3‐(pyridin‐2‐yl‐κN)‐1,2,4‐triazine‐κN2](nitrato‐κ2O,O′)lead(II)}, [Pb2(C2N3)2(NO3)2(C16H10N4O2)4], 2 , as well as DFPT itself, were prepared and identified by elemental analysis, FT–IR, 1H NMR spectroscopy and single‐crystal X‐ray structural analyses. In the double‐chain 1D coordination polymer of 1 and the binuclear structure of 2 , the Pb atom has a hemidirected‐PbN6S2 and a rare holodirected‐PbN6O2 environment, respectively, with a distorted cubic geometry. All the coordination modes of dicyanamide ligands within lead complexes were studied using the Cambridge Structural Database (CSD) to compare them with the structures of 1 and 2 . In addition to hydrogen bonds, the crystal networks are stabilized by π–π stacking interactions between the triazine, furyl and pyridine aromatic rings. The most stable theoretical structures of the title compounds predicted by density functional theory (DFT) calculations were compared with the solid‐state results.  相似文献   

2.
In poly[aqua(μ3‐benzene‐1,4‐dicarboxylato‐κ5O1,O1′:O1:O4,O4′)[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cadmium(II)], [Cd(C8H4O4)(C12H9N3)(H2O)]n, (I), each CdII ion is seven‐coordinated by the pyridine N atom from a 2‐(pyridin‐3‐yl)benzimidazole (3‐PyBIm) ligand, five O atoms from three benzene‐1,4‐dicarboxylate (1,4‐bdc) ligands and one O atom from a coordinated water molecule. The complex forms an extended two‐dimensional carboxylate layer structure, which is further extended into a three‐dimensional network by hydrogen‐bonding interactions. In catena‐poly[[diaquabis[2‐(pyridin‐3‐yl‐κN)‐1H‐benzimidazole]cobalt(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Co(C8H4O4)(C12H9N3)2(H2O)2]n, (II), each CoII ion is six‐coordinated by two pyridine N atoms from two 3‐PyBIm ligands, two O atoms from two 1,4‐bdc ligands and two O atoms from two coordinated water molecules. The complex forms a one‐dimensional chain‐like coordination polymer and is further assembled by hydrogen‐bonding interactions to form a three‐dimensional network.  相似文献   

3.
The complex poly[[aqua(μ2‐phthalato‐κ2O1:O2){μ3‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ4N2,N3:O:O′}{μ2‐2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetato‐κ3N2,N3:O}dizinc(II)] dihydrate], {[Zn2(C10H8N3O2)2(C8H4O4)(H2O)]·2H2O}n, has been prepared by solvothermal reaction of 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetonitrile (PPAN) with zinc(II). Under hydrothermal conditions, PPAN is hydrolyzed to 2‐[3‐(pyridin‐2‐yl)‐1H‐pyrazol‐1‐yl]acetate (PPAA). The structure determination reveals that the complex is a one‐dimensional double chain containing cationic [Zn4(PPAA)4]4+ structural units, which are further extended by bridging phthalate ligands. The one‐dimensional chains are extended into a three‐dimensional supramolecular architecture via hydrogen‐bonding and π–π stacking interactions.  相似文献   

4.
With the new semi‐rigid V‐shaped bidentate pyridyl amide compound 5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide (L) as an auxiliary ligand and the FeII ion as the metal centre, one mononuclear complex, bis(methanol‐κO)bis[5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κN]bis(thiocyanato‐κN)iron(II), [Fe(SCN)2(C19H16N4O2)2(CH3OH)2] ( 1 ), and one two‐dimensional coordination polymer, catena‐poly[[[bis(thiocyanato‐κN)iron(II)]‐bis[μ‐5‐methyl‐N,N′‐bis(pyridin‐4‐yl)benzene‐1,3‐dicarboxamide‐κ2N:N′]] methanol disolvate dihydrate], {[Fe(SCN)2(C19H16N4O2)2]·2CH3OH·2H2O}n ( 2 ), were prepared by slow evaporation and H‐tube diffusion methods, respectively, indicating the effect of the method of crystallization on the structure type of the target product. Both complexes have been structurally characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray crystallography. The single‐crystal X‐ray diffraction analysis shows that L functions as a monodentate ligand in mononuclear 1 , while it coordinates in a bidentate manner to two independent Fe(SCN)2 units in complex 2 , with a different conformation from that in 1 and the ligands point in two almost orthogonal directions, therefore leading to a two‐dimensional grid‐like network. Investigation of the magnetic properties reveals the always high‐spin state of the FeII centre over the whole temperature range in 1 and a gradual thermally‐induced incomplete spin crossover (SCO) behaviour below 150 K in 2 , demonstrating the influence of the different coordination fields on the spin properties of the metal ions. The current results provide useful information for the rational design of functional complexes with different structure dimensionalities by employing different conformations of the ligand and different crystallization methods.  相似文献   

5.
Two new NiII complexes involving the ancillary ligand bis[(pyridin‐2‐yl)methyl]amine (bpma) and two different carboxylate ligands, i.e. homophthalate [hph; systematic name: 2‐(2‐carboxylatophenyl)acetate] and benzene‐1,2,4,5‐tetracarboxylate (btc), namely catena‐poly[[aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)]‐μ‐2‐(2‐carboxylatophenyl)aceteto‐κ2O:O′], [Ni(C9H6O4)(C12H13N3)(H2O)]n, and (μ‐benzene‐1,2,4,5‐tetracarboxylato‐κ4O1,O2:O4,O5)bis(aqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) bis(triaqua{bis[(pyridin‐2‐yl)methyl]amine‐κ3N,N′,N′′}nickel(II)) benzene‐1,2,4,5‐tetracarboxylate hexahydrate, [Ni2(C10H2O8)(C12H13N3)2(H2O)2]·[Ni(C12H13N3)(H2O)3]2(C10H2O8)·6H2O, (II), are presented. Compound (I) is a one‐dimensional polymer with hph acting as a bridging ligand and with the chains linked by weak C—H...O interactions. The structure of compound (II) is much more complex, with two independent NiII centres having different environments, one of them as part of centrosymmetric [Ni(bpma)(H2O)]2(btc) dinuclear complexes and the other in mononuclear [Ni(bpma)(H2O)3]2+ cations which (in a 2:1 ratio) provide charge balance for btc4− anions. A profuse hydrogen‐bonding scheme, where both coordinated and crystal water molecules play a crucial role, provides the supramolecular linkage of the different groups.  相似文献   

6.
Reaction of the flexible phenolic carboxylate ligand 2‐(3,5‐dicarboxylbenzyloxy)benzoic acid (H3L) with nickel salts in the presence of 1,2‐bis(pyridin‐4‐yl)ethylene (bpe) leads to the generation of a mixture of the two complexes under solvolthermal conditions, namely poly[[aqua[μ‐1,2‐bis(pyridin‐4‐yl)ethylene‐κ2N:N′]{μ‐5‐[(2‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ3O1,O1′:O3}nickel(II)] dimethylformamide hemisolvate monohydrate], {[Ni(C16H10O7)(C12H10N2)(H2O)]·0.5C3H7NO·H2O}n or {[Ni(HL)(bpe)(H2O)]·0.5DMF·H2O}n, 1 , and poly[[diaquatris[μ‐1,2‐bis(pyridin‐4‐yl)ethylene‐κ2N:N′]bis{μ‐5‐[(2‐carboxyphenoxy)methyl]benzene‐1,3‐dicarboxylato‐κ2O1:O5}nickel(II)] dimethylformamide disolvate hexahydrate], {[Ni2(C16H10O7)2(C12H10N2)3(H2O)2]·2C3H7NO·6H2O}n or {[Ni2(HL)2(bpe)3(H2O)2]·2DMF·6H2O}n, 2 . In complex 1 , the NiII centres are connected by the carboxylate and bpe ligands to form two‐dimensional (2D) 4‐connected (4,4) layers, which are extended into a 2D+2D→3D (3D is three‐dimensional) supramolecular framework. In complex 2 , bpe ligands connect to NiII centres to form 2D layers with Ni6(bpe)6 metallmacrocycles. Interestingly, 2D+2D→3D inclined polycatenation was observed between these layers. The final 5‐connected 3D self‐penetrating structure was generated through further connection of Ni–carboxylate chains with these inclined motifs. Both complexes were fully characterized by single‐crystal analysis, powder X‐ray diffraction analysis, FT–IR spectra, elemental analyses, thermal analysis and UV–Vis spectra. Notably, an interesting metal/ligand‐induced crystal‐to‐crystal transformation was observed between the two complexes.  相似文献   

7.
The design and synthesis of metal–organic frameworks (MOFs) have attracted much interest due to the intriguing diversity of their architectures and topologies. However, building MOFs with different topological structures from the same ligand is still a challenge. Using 3‐nitro‐4‐(pyridin‐4‐yl)benzoic acid (HL) as a new ligand, three novel MOFs, namely poly[[(N,N‐dimethylformamide‐κO)bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O,O′:N]cadmium(II)] N,N‐dimethylformamide monosolvate methanol monosolvate], {[Cd(C12H7N2O4)2(C3H7NO)]·C3H7NO·CH3OH}n, ( 1 ), poly[[(μ2‐acetato‐κ2O:O′)[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ3O:O′:N]bis[μ3‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ4O,O′:O′:N]dicadmium(II)] N,N‐dimethylacetamide disolvate monohydrate], {[Cd2(C12H7N2O4)3(CH3CO2)]·2C4H9NO·H2O}n, ( 2 ), and catena‐poly[[[diaquanickel(II)]‐bis[μ2‐3‐nitro‐4‐(pyridin‐4‐yl)benzoato‐κ2O:N]] N,N‐dimethylacetamide disolvate], {[Ni(C12H7N2O4)2(H2O)2]·2C4H9NO}n, ( 3 ), have been prepared. Single‐crystal structure analysis shows that the CdII atom in MOF ( 1 ) has a distorted pentagonal bipyramidal [CdN2O5] coordination geometry. The [CdN2O5] units as 4‐connected nodes are interconnected by L? ligands to form a fourfold interpenetrating three‐dimensional (3D) framework with a dia topology. In MOF ( 2 ), there are two crystallographically different CdII ions showing a distorted pentagonal bipyramidal [CdNO6] and a distorted octahedral [CdN2O4] coordination geometry, respectively. Two CdII ions are connected by three carboxylate groups to form a binuclear [Cd2(COO)3] cluster. Each binuclear cluster as a 6‐connected node is further linked by acetate groups and L? ligands to produce a non‐interpenetrating 3D framework with a pcu topology. MOF ( 3 ) contains two crystallographically distinct NiII ions on special positions. Each NiII ion adopts an elongated octahedral [NiN2O4] geometry. Each NiII ion as a 4‐connected node is linked by L? ligands to generate a two‐dimensional network with an sql topology, which is further stabilized by two types of intermolecular OW—HW…O hydrogen bonds to form a 3D supramolecular framework. MOFs ( 1 )–( 3 ) were also characterized by powder X‐ray diffraction, IR spectroscopy and thermogravimetic analysis. Furthermore, the solid‐state photoluminescence of HL and MOFs ( 1 ) and ( 2 ) have been investigated. The photoluminescence of MOFs ( 1 ) and ( 2 ) are enhanced and red‐shifted with respect to free HL. The gas adsorption investigation of MOF ( 2 ) indicates a good separation selectivity (71) of CO2/N2 at 273 K (i.e. the amount of CO2 adsorption is 71 times higher than N2 at the same pressure).  相似文献   

8.
The photophysical properties of transition metal complexes of the 5,6‐dimethyl‐2‐(pyridin‐2‐yl)‐1‐(pyridin‐2‐ylmethyl)‐1H‐benzimidazole ligand are of interest. Dichlorido[5,6‐dimethyl‐2‐(pyridin‐2‐yl)‐1‐(pyridin‐2‐ylmethyl)‐1H‐benzimidazole‐κ2N 2,N 3]platinum(II), [PtCl2(C20H18N4)], is luminescent in the solid state at room temperature. The compound displays a distorted square‐planar coordination geometry. The Pt—N(imidazole) bond length is shorter than the Pt—N(pyridine) bond length. The extended structure reveals that symmetry‐related molecules display weak C—H…N, C—H…Cl, and C—H…Pt hydrogen‐bonding interactions that are clearly discernable in the Hirshfeld surface and fingerprint plots. The intermolecular C—H…Pt and C—H…N interactions have been explored using density functional theory. The result of an analysis of the distance dependence of C—H…Pt yields a value consistent with that observed in the solid‐state structure. The energy of interaction for the C—H…Pt interaction is found to be about −11 kJ mol−1.  相似文献   

9.
Due to their versatile coordination modes and metal‐binding conformations, triazolyl ligands can provide a wide range of possibilities for the construction of supramolecular structures. Seven mononuclear transition metal complexes with different structural forms, namely aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(H2O)], (I), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )zinc(II), [Zn(NO3)2(C14H12N4)2], (II), bis(methanol‐κO )bis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]zinc(II), [Zn(C14H11N4)2(CH4O)2], (III), diiodidobis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]cadmium(II), [CdI2(C14H12N4)2], (IV), bis[5‐(4‐methylphenyl)‐3‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole‐κ2N 3,N 4]bis(nitrato‐κO )cadmium(II), [Cd(NO3)2(C14H12N4)2], (V), aquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]cobalt(II), [Co(C14H11N4)2(H2O)], (VI), and diaquabis[3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazolato‐κ2N 1,N 5]nickel(II), [Ni(C14H11N4)2(H2O)2], (VII), have been prepared by the reaction of transition metal salts (ZnII, CdII, CoII and NiII) with 3‐(4‐methylphenyl)‐5‐(pyridin‐2‐yl)‐1H‐1,2,4‐triazole (pymphtzH) under either ambient or hydrothermal conditions. These compounds have been characterized by elemental analysis, IR spectroscopy and single‐crystal X‐ray diffraction. All the complexes form three‐dimensional supramolecular structures through hydrogen bonds or through π–π stacking interactions between the centroids of the pyridyl or arene rings. The pymphtzH and pymphtz entities act as bidentate coordinating ligands in each structure. Moreover, all the pyridyl N atoms are coordinated to metal atoms (Zn, Cd, Co or Ni). The N atom in the 4‐position of the triazole group is coordinated to the Zn and Cd atoms in the crystal structures of (II), (IV) and (V), while the N atom in the 1‐position of the triazolate group is coordinated to the Zn, Co and Ni atoms in (I), (III), (VI) and (VII).  相似文献   

10.
Iron is of interest as a catalyst because of its established use in the Haber–Bosch process and because of its high abundance and low toxicity. Nitrogen‐heterocyclic carbenes (NHC) are important ligands in homogeneous catalysis and iron–NHC complexes have attracted increasing attention in recent years but still face problems in terms of stability under oxidative conditions. The structure of the iron(II) complex [1,1′‐bis(pyridin‐2‐yl)‐2,2‐bi(1H‐imidazole)‐κN3][3,3′‐bis(pyridin‐2‐yl‐κN)‐1,1′‐methanediylbi(1H‐imidazol‐2‐yl‐κC2)](trimethylphosphane‐κP)iron(II) bis(hexafluoridophosphate), [Fe(C17H14N6)(C16H12N6)(C3H9P)](PF6)2, features coordination by an organic decomposition product of a tetradentate NHC ligand in an axial position. The decomposition product, a C—C‐coupled biimidazole, is trapped by coordination to still‐intact iron(II) complexes. Insights into the structural features of the organic decomposition products might help to improve the stability of oxidation catalysts under harsh conditions.  相似文献   

11.
Supramolecular isomerism for coordination networks refers to the existence of different architectures having the same building blocks and identical stoichiometries. For a given building block, different arrangements can lead to the formation of a series of supramolecular isomers. Two one‐dimensional CoII coordination polymers based on N,N′‐bis(pyridin‐3‐yl)oxalamide (BPO), both catena‐poly[[[dichloridocobalt(II)]‐bis[μ‐N,N′‐bis(pyridin‐3‐yl)oxalamide‐κ2N:N′]] dimethylformamide disolvate], {[CoCl2(C12H10N4O2)2]·2C3H7NO}n, have been assembled by the solvothermal method. Single‐crystal X‐ray diffraction analyses reveal that the two compounds are supramolecular isomers, the isomerism being induced by the orientation of the dimethylformamide (DMF) molecules in the crystal lattice.  相似文献   

12.
Two new ZnII coordination polymers, namely, catena‐poly[[dibromidozinc(II)]‐μ‐[3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione‐κ2N:N′]], [ZnBr2(C24H14N2O2)]n, (1), and poly[[bromido[μ3‐10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olato‐κ3N:N′:O9]zinc(II)] hemihydrate], {[ZnBr(C24H15N2O2)]·0.5H2O}n, (2), have been synthesized through hydrothermal reaction of ZnBr2 and a 60° angular phenanthrenedione‐based linker, i.e. 3,6‐bis(pyridin‐4‐yl)phenanthrene‐9,10‐dione, in different solvent systems. Single‐crystal analysis reveals that polymer (1) features one‐dimensional zigzag chains connected by weak C—H...π and π–π interactions to form a two‐dimensional network. The two‐dimensional networks are further stacked in an ABAB fashion along the a axis through C—H...O hydrogen bonds. Layers A and B comprise left‐ and right‐handed helical chains, respectively. Coordination polymer (2) displays a wave‐like two‐dimensional layered structure with helical chains. In this compound, there are two opposite helical –Zn–HL– chains [HL is 10‐hydroxy‐3,6‐bis(pyridin‐4‐yl)phenanthren‐9‐olate] in adjacent layers. The layers are packed in an ABAB sequence and are further connected through O—H...Br and O—H...O hydrogen‐bond interactions to form a three‐dimensional framework. In (1) and (2), the mutidentate L and HL ligands exhibits different coordination modes.  相似文献   

13.
The dipyridyl‐type building blocks 4‐amino‐3,5‐bis(pyridin‐3‐yl)‐1,2,4‐triazole (3‐bpt) and 4,4′‐bipyridine (bpy) have been used to assemble with ZnII in the presence of trithiocyanuric acid (ttcH3) to afford two coordination compounds, namely bis[4‐amino‐3,5‐bis(pyridin‐3‐yl)‐1,2,4‐triazole‐κN3]bis(trithiocyanurato‐κ2N,S)zinc(II), [Zn(C3H2N3S3)2(C12H10N6)2]·2H2O, (1), and catena‐poly[[[bis(trithiocyanurato‐κ2N,S)zinc(II)]‐μ‐4,4′‐bipyridine‐κ2N:N′] 4,4′‐bipyridine monosolvate], {[Zn2(C3H2N3S3)4(C10H8N2)3]·C10H8N2}n, (2). Single‐crystal X‐ray analysis indicates that complex (1) is a mononuclear structure, while complex (2) presents a one‐dimensional chain coordination motif. In both complexes, the central ZnII cation adopts an octahedral geometry, coordinated by four N‐ and two S‐donor atoms. Notably, trithiocyanurate (ttcH2) adopts the same bidentate chelating coordination mode in each complex and exists in the thione tautomeric form. The 3‐bpt co‐ligand in (1) adopts a monodentate coordination mode and serves as a terminal pendant ligand, whereas the 4,4′‐bipyridine (bpy) ligand in (2) adopts a bidentate–bridging coordination mode. The different coordination characters of the different N‐donor auxiliary ligands lead to structural diversity for complexes (1) and (2). Further analysis indicates that the resultant three‐dimensional supramolecular networks for (1) and (2) arise through intermolecular N—H...S and N—H...N hydrogen bonds. Both complexes have been further characterized by FT–IR spectroscopy and elemental analyses.  相似文献   

14.
1‐[6‐(1H‐Pyrrolo[2,3‐b]pyridin‐1‐yl)pyridin‐2‐yl]‐1H‐pyrrolo[2,3‐b]pyridin‐7‐ium tetrachloridoferrate(III), (C19H14N5)[FeCl4], (II), and [2,6‐bis(1H‐pyrrolo[2,3‐b]pyridin‐1‐yl‐κN7)pyridine‐κN]bis(nitrato‐κO)copper(II), [Cu(NO3)2(C19H13N5)], (III), were prepared by self‐assembly from FeCl3·6H2O or Cu(NO3)2·3H2O and 2,6‐bis(1H‐pyrrolo[2,3‐b]pyridin‐1‐yl)pyridine [commonly called 2,6‐bis(azaindole)pyridine, bap], C19H13N5, (I). Compound (I) crystallizes with Z′ = 2 in the P space group, with both independent molecules adopting a transtrans conformation. Compound (II) is a salt complex with weak C—H...Cl interactions giving rise to a zigzag network with π‐stacking down the a axis. Complex (III) lies across a twofold rotation axis in the C2/c space group. The CuII center in (III) has an N3O2 trigonal–bipyramidal environment. The nitrate ligand coordinates in a monodentate fashion, while the bap ligand adopts a twisted tridentate binding mode. C—H...O interactions give rise to a ribbon motif.  相似文献   

15.
The complexes [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)cobalt(II), [Co(C12H27O3SSi)2(C5H9N3)], and [2‐(1H‐imidazol‐4‐yl‐κN3)ethylamine‐κN]bis(tri‐tert‐butoxysilanethiolato‐κS)zinc(II), [Zn(C12H27O3SSi)2(C5H9N3)], are isomorphous. The central ZnII/CoII ions are surrounded by two S atoms from the tri‐tert‐butoxysilanethiolate ligand and by two N atoms from the chelating histamine ligand in a distorted tetrahedral geometry, with two intramolecular N—H...O hydrogen‐bonding interactions between the histamine NH2 groups and tert‐butoxy O atoms. Molecules of the complexes are joined into dimers via two intermolecular bifurcated N—H...(S,O) hydrogen bonds. The ZnII atom in [(1H‐imidazol‐4‐yl‐κN3)methanol]bis(tri‐tert‐butoxysilanethiolato‐κ2O,S)zinc(II), [Zn(C12H27O3SSi)2(C4H6N2O)], is five‐coordinated by two O and two S atoms from the O,S‐chelating silanethiolate ligand and by one N atom from (1H‐imidazol‐4‐yl)methanol; the hydroxy group forms an intramolecular hydrogen bond with sulfur. Molecules of this complex pack as zigzag chains linked by N—H...O hydrogen bonds. These structures provide reference details for cysteine‐ and histidine‐ligated metal centers in proteins.  相似文献   

16.
The structures of five compounds consisting of (prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine complexed with copper in both the CuI and CuII oxidation states are presented, namely chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(I) 0.18‐hydrate, [CuCl(C15H17N3)]·0.18H2O, (1), catena‐poly[[copper(I)‐μ2‐(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ5N,N′,N′′:C2,C3] perchlorate acetonitrile monosolvate], {[Cu(C15H17N3)]ClO4·CH3CN}n, (2), dichlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) dichloromethane monosolvate, [CuCl2(C15H17N3)]·CH2Cl2, (3), chlorido{(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II) perchlorate, [CuCl(C15H17N3)]ClO4, (4), and di‐μ‐chlorido‐bis({(prop‐2‐en‐1‐yl)bis[(pyridin‐2‐yl)methylidene]amine‐κ3N,N′,N′′}copper(II)) bis(tetraphenylborate), [Cu2Cl2(C15H17N3)2][(C6H5)4B]2, (5). Systematic variation of the anion from a coordinating chloride to a noncoordinating perchlorate for two CuI complexes results in either a discrete molecular species, as in (1), or a one‐dimensional chain structure, as in (2). In complex (1), there are two crystallographically independent molecules in the asymmetric unit. Complex (2) consists of the CuI atom coordinated by the amine and pyridyl N atoms of one ligand and by the vinyl moiety of another unit related by the crystallographic screw axis, yielding a one‐dimensional chain parallel to the crystallographic b axis. Three complexes with CuII show that varying the anion composition from two chlorides, to a chloride and a perchlorate to a chloride and a tetraphenylborate results in discrete molecular species, as in (3) and (4), or a bridged bis‐μ‐chlorido complex, as in (5). Complex (3) shows two strongly bound Cl atoms, while complex (4) has one strongly bound Cl atom and a weaker coordination by one perchlorate O atom. The large noncoordinating tetraphenylborate anion in complex (5) results in the core‐bridged Cu2Cl2 moiety.  相似文献   

17.
Three photoluminescent complexes containing either ZnII or CdII have been synthesized and their structures determined. Bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)zinc(II), [Zn(C12H10N6)2(C2N3)2], (I), bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C2N3)2], (II), and bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(tricyanomethanido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C4N3)2], (III), all crystallize in the space group P , with the metal centres lying on centres of inversion, but neither analogues (I) and (II) nor CdII complexes (II) and (III) are isomorphous. A combination of N—H…N and C—H…N hydrogen bonds and π–π stacking interactions generates three‐dimensional framework structures in (I) and (II), and a sheet structure in (III). The photoluminescence spectra of (I)–(III) indicate that the energies of the π–π* transitions in the coordinated triazole ligand are modified by minor changes of the ligand geometry associated with coordination to the metal centres.  相似文献   

18.
The novel asymmetric bridging ligand 1‐[(pyridin‐3‐yl)methyl]‐2‐[4‐(pyridin‐3‐yl)phenyl]‐1H‐benzimidazole (L) has been used to construct the coordination polymers catena‐poly[[[dibromidocadmium(II)]‐μ3‐1‐[(pyridin‐3‐yl)methyl]‐2‐[4‐(pyridin‐3‐yl)phenyl]‐1H‐benzimidazole] monohydrate], {[CdBr2(C24H18N4)]·H2O}n, (I), and catena‐poly[[diiodidocadmium(II)]‐μ3‐1‐[(pyridin‐3‐yl)methyl]‐2‐[4‐(pyridin‐3‐yl)phenyl]‐1H‐benzimidazole], [CdI2(C24H18N4)]n, (II). Compounds (I) and (II) are closely related one‐dimensional polymers based on 16‐ and 20‐membered macrocycles along the chains, but they are not isomorphous. The chains are crosslinked into a two‐dimensional network via hydrogen bonds and π–π interactions in (I), and into a three‐dimensional framework through π–π interactions in (II). One well‐ordered solvent water molecule per asymmetric unit is included in (I) and forms O...Br hydrogen bonds.  相似文献   

19.
A new 1,3,4‐oxadiazole‐containing bispyridyl ligand, namely 5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione (L), has been used to create the novel complexes tetranitratobis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}zinc(II), [Zn2(NO3)4(C14H12N4OS)2], (I), and catena‐poly[[[dinitratocopper(II)]‐bis{μ‐5‐(pyridin‐4‐yl)‐3‐[2‐(pyridin‐4‐yl)ethyl]‐1,3,4‐oxadiazole‐2(3H)‐thione}] nitrate acetonitrile sesquisolvate dichloromethane sesquisolvate], {[Cu(NO3)(C14H12N4OS)2]NO3·1.5CH3CN·1.5CH2Cl2}n, (II). Compound (I) presents a distorted rectangular centrosymmetric Zn2L2 ring (dimensions 9.56 × 7.06 Å), where each ZnII centre lies in a {ZnN2O4} coordination environment. These binuclear zinc metallocycles are linked into a two‐dimensional network through nonclassical C—H...O hydrogen bonds. The resulting sheets lie parallel to the ac plane. Compound (II), which crystallizes as a nonmerohedral twin, is a coordination polymer with double chains of CuII centres linked by bridging L ligands, propagating parallel to the crystallographic a axis. The CuII centres adopt a distorted square‐pyramidal CuN4O coordination environment with apical O atoms. The chains in (II) are interlinked via two kinds of π–π stacking interactions along [01]. In addition, the structure of (II) contains channels parallel to the crystallographic a direction. The guest components in these channels consist of dichloromethane and acetonitrile solvent molecules and uncoordinated nitrate anions.  相似文献   

20.
In catena‐poly[[aqua[1,3‐bis(pyridine‐3‐ylmethoxy)benzene‐κN]zinc(II)]‐μ2‐benzene‐1,4‐dicarboxylato‐κ2O1:O4], [Zn(C8H4O4)(C18H16N2O2)(H2O)]n, each ZnII centre is tetrahedrally coordinated by two O atoms of bridging carboxylate groups from two benzene‐1,4‐dicarboxylate anions (denoted L2−), one O atom from a water molecule and one N atom from a 1,3‐bis[(pyridin‐3‐yl)methoxy]benzene ligand (denoted bpmb). (Aqua)O—H...N hydrogen‐bonding interactions induce the formation of one‐dimensional helical [Zn(L)(bpmb)(H2O)]n chains which are interlinked through (aqua)O—H...O hydrogen‐bonding interactions, producing two‐dimensional corrugated sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号