首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The development of enantioselective catalytic processes that make use of sunlight as the energy source and nontoxic, affordable materials as catalysts represents one of the new and rapidly evolving areas in chemical research. The direct asymmetric α‐alkylation of aldehydes with α‐bromocarbonyl compounds can be successfully achieved by combining bismuth‐based materials as low‐band‐gap photocatalysts with the second‐generation MacMillan imidazolidinone as the chiral catalyst and simulated sunlight as a low‐cost and clean energy source. This reaction also proceeded with high efficiency when the reaction vial was exposed to the morning sunlight on a clear September day in Tarragona, Spain.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Visible‐light‐induced photocatalytic decarboxylative alkynylations of carboxylic acids have been developed for the first time. The reaction features extremely mild conditions, broad substrate scope, and avoids additional oxidants. Importantly, a decarboxylative carbonylative alkynylation has also been carried out in the presence of carbon monoxide (CO) under photocatalytic conditions, which affords valuable ynones in high yields at room temperature.  相似文献   

14.
Photo‐mediated 6π cyclization is a valuable method for the formation of fused heterocyclic systems. Here we demonstrate that irradiation of cyclic 2‐aryloxyketones with blue LED light in the presence of an IrIII complex leads to efficient and high yielding arylation across a panoply of substrates by energy transfer. 2‐Arylthioketones and 2‐arylaminoketones also cyclize effectively under these conditions. Quantum calculation demonstrates that the reaction proceeds via conrotatory ring closure in the triplet excited state. Subsequent suprafacial 1,4‐hydrogen shift and epimerization leads to the observed cis‐fused products.  相似文献   

15.
16.
17.
Photochemical ligation is important in biomaterials engineering for spatiotemporal control of biochemical processes. Such reactions however generally require activation by high energy UV or short wavelength blue light, which can limit their use as a consequence of the potential of these high energy light sources to damage living cells. Herein, we present an additive-free, biocompatible, chemical ligation triggered by mild visible light. BODIPY dyes with a pendant thioether attached at the meso-position undergo photolysis of the [C−S] bond under green light (λ=530 nm) excitation, producing an ion pair intermediate that can react specifically with a propiolate group. The utility of this photochemical ligation in materials science is demonstrated by the fabrication of hydrogels with specific architectures, photo-immobilization of biomacromolecules, and live cell encapsulation within a hydrogel scaffold.  相似文献   

18.
We report the efficient carboxylation of bromides and triflates with K2CO3 as the source of CO2 in the presence of an organic photocatalyst in combination with a nickel complex under visible light irradiation at room temperature. The reaction is compatible with a variety of functional groups and has been successfully applied to the synthesis and derivatization of biologically active molecules. In particular, the carboxylation of unactivated cyclic alkyl bromides proceeded well with our protocol, thus extending the scope of this transformation. Spectroscopic and spectroelectrochemical investigations indicated the generation of a Ni0 species as a catalytic reactive intermediate.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号