首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The dinuclear Cu(II) complexes [Cu2(L1)2(mb)]?ClO4 ( 1 ) and [Cu2(L2)2(mb)]?ClO4 ( 2 ) (HL1 = 2‐[(2‐diethylaminoethylimino)methyl]phenol; HL2 = 2‐[1‐(2‐diethylaminoethylimino)propyl]phenol; mb = 4‐methylbenzoate) were synthesized and characterized using X‐ray crystal structure analysis and spectroscopic methods. Complexes 1 and 2 are dinuclear with distorted square pyramidal Cu (II) geometries, where Schiff base coordinates with tridentate (N,N,O) chelating mode and mb bridges two metal centres. Optimized structures and photophysical properties of ligands and complexes were calculated using density functional theory and time‐dependent density functional theory methods using B3LYP functional with 6‐31G (d,p) and LanL2MB basis sets. Interactions of the complexes with bovine serum albumin (BSA) and human serum albumin (HSA) were studied using UV–visible absorption and fluorescence spectroscopies and the calculated values of association constants (M?1) are 1.7 × 105 ( 1 –BSA), 5.7 × 105 ( 2 –BSA), 1.6 × 105 ( 1 –HSA) and 6.9 × 105 ( 2 –HSA). Interactions of the complexes with calf thymus DNA were also investigated and the binding affinities are 1.4 × 105 and 1.6 × 105 M?1 for 1 and 2 , respectively. Both complexes catalytically oxidize 3,5‐di‐tert‐butylcatechol to 3,5‐di‐tert‐butylbenzoquinone in the presence of molecular oxygen.  相似文献   

2.
The mixed-valence manganese(Ⅲ/Ⅳ) complex [Mn2(cyclen)2(μ-O)2](ClO4)3-4H2O (1) (cyclen=1,4,7,10-tetraazacyclododecan) with chemical formula C16H48Cl3Mn2N8O18 has been synthesized and characterized by single crystal X-ray diffraction analysis, elemental analysis, IR and electronic spectra. The results showed that the manganese(Ⅲ/Ⅳ) ions were six-coordinated by four nitrogen atoms from cyclen and two oxygen atoms from the oxygen bridge, forming a distorted octahedron geometry. There were two very strong peaks in the range of 400-700 nm in electronic spectrum, which was similar to Mn catalase and Mn ribonucleotide reductase extracted from organisms.Electrochemical study indicated that the complex underwent a quasi-reversible one-electron reduction and oxidation at E1/2=0.827 V in acetonitrile.  相似文献   

3.
The determination of the crystal structure of the M phase, (MnxZn1–x)2V2O7 (0.75 < x < 0.913), in the pseudobinary Mn2V2O7–Zn2V2O7 system for x ≃ 0.8 shows that the previously published triclinic unit‐cell parameters for this thortveitite‐related phase do not describe a true lattice for this phase. Instead, single‐crystal X‐ray data and Rietveld refinement of synchrotron X‐ray powder data show that the M phase has a different triclinic structure in the space group P with Z = 2. As prior work has suggested, the crystal structure can be described as a distorted version of the thortveitite crystal structure of β‐Mn2V2O7. A twofold superstructure in diffraction patterns of crystals of the M phase used for single‐crystal X‐ray diffraction work arises from twinning by reticular pseudomerohedry. This superstructure can be described as a commensurate modulation of a pseudo‐monoclinic basis structure closely related to the crystal structure of β‐Mn2V2O7. In comparison with the distortions introduced when β‐Mn2V2O7 transforms at low temperature to α‐Mn2V2O7, the distortions which give rise to the M phase from the β‐Mn2V2O7 prototype are noticeably less pronounced.  相似文献   

4.
In the title compound, [Cu(C7H3N2O4)(C4H5N2)(H2O)], (I), pyridine‐2,6‐dicarboxylate (pydc2−), 2‐aminopyrimidine and aqua ligands coordinate the CuII centre through two N atoms, two carboxylate O atoms and one water O atom, respectively, to give a nominally distorted square‐pyramidal coordination geometry, a common arrangement for copper complexes containing the pydc2− ligand. Because of the presence of Cu...Xbridged contacts (X = N or O) between adjacent molecules in the crystal structures of (I) and three analogous previously reported compounds, and the corresponding uncertainty about the effective coordination number of the CuII centre, density functional theory (DFT) calculations were used to elucidate the degree of covalency in these contacts. The calculated Wiberg and Mayer bond‐order indices reveal that the Cu...O contact can be considered as a coordination bond, whereas the amine group forming a Cu...N contact is not an effective participant in the coordination environment.  相似文献   

5.
NMR studies of the structure and dynamics of a system composed of the acidic polymer poly(acrylic acid) (PAA) and the basic polymer poly(4‐vinyl pyridine) (P4VP) are presented. This system aims at the application of anhydrous proton‐conducting membranes that can be used at elevated temperatures at which the proton conduction of hydrated membranes breaks down. The 1H NMR measurements have been preformed under fast magic angle spinning (MAS) conditions to achieve sufficient resolution and the applied 1H NMR methods vary from simple 1H MAS to double‐quantum filtered methods and two‐dimensional 1H double‐quantum spectroscopy. The dynamic behavior of the systems has been investigated via variable temperature 1H MAS NMR. 13C cross‐polarization MAS NMR provides additional aspects of dynamic and structural features to complete the picture. Different types of acidic protons have been identified in the studied PAA‐P4VP systems that are nonhydrogen‐bonded free acidic protons, hydrogen‐bonded dicarboxylic dimers, and protons forming hydrogen bonds between carboxylic protons and ring nitrogens. The conversion of dimer structures in dried PAA to free carboxylic acid groups is accomplished at temperatures above 380 K. However, the stability of hydrogen‐bonding strongly depends on the hydration level of the polymer systems. The effect of hydration becomes less apparent in the complexes. An inverse proportionality between hydrogen‐bonding strength and proton conduction in the PAA‐P4VP acid–base polymer blend systems was established. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 138–155, 2009  相似文献   

6.
Transition metal complexes of Schiff base ligands have been shown to have particular application in catalysis and magnetism. The chemistry of copper complexes is of interest owing to their importance in biological and industrial processes. The reaction of copper(I) chloride with the bidentate Schiff base N,N′‐bis(trans‐2‐nitrocinnamaldehyde)ethylenediamine {Nca2en, systematic name: (1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]} in a 1:1 molar ratio in dichloromethane without exclusion of air or moisture resulted in the formation of the title complex μ‐chlorido‐μ‐hydroxido‐bis(chlorido{(1E,1′E,2E,2′E)‐N,N′‐(ethane‐1,2‐diyl)bis[3‐(2‐nitrophenyl)prop‐2‐en‐1‐imine]‐κ2N,N′}copper(II)) dichloromethane sesquisolvate, [Cu2Cl3(OH)(C20H18N4O4)2]·1.5CH2Cl2. The dinuclear complex has a folded four‐membered ring in an unsymmetrical Cu2OCl3 core in which the approximate trigonal bipyramidal coordination displays different angular distortions in the equatorial planes of the two CuII atoms; the chloride bridge is asymmetric, but the hydroxide bridge is symmetric. The chelate rings of the two Nca2en ligands have different conformations, leading to a more marked bowing of one of the ligands compared with the other. This is the first reported dinuclear complex, and the first five‐coordinate complex, of the Nca2en Schiff base ligand. Molecules of the dimer are associated in pairs by ring‐stacking interactions supported by C—H…Cl interactions with solvent molecules; a further ring‐stacking interaction exists between the two Schiff base ligands of each molecule.  相似文献   

7.
A new dinuclear copper (II) complex of 2,5–furandicarboxyclic acid with 4(5)‐methylimidazole, [Cu (FDCA)((4(5)MeI)2]2·2H2O, was synthesized, and its structure characterized by XRD, FT–IR and UV–Vis spectroscopic techniques. The α‐glucosidase inhibition and cytotoxicity study of the synthesized Cu (II) complex were determined by IC50 values. The optimized geometry and vibrational harmonic frequencies for the Cu (II) complex were obtained by using Density Functional Theory (DFT) of HSEh1PBE/6–311++G(d,p)/LanL2DZ level. TD‐DFT/HSEh1PBE/6–311++G(d,p)/LanL2DZ level with CPCM model was applied to examine the electronic spectral properties and major contributions were determined via Swizard program. To investigate linear and nonlinear optical behavior of the synthesized Cu (II) complex, the α, Δα and χ(1)/β, γ and χ(3) parameters called linear/nonlinear optical parameters in gas phase and ethanol solvent were computed at the same level and basis set. Furthermore, molecular electrostatic potential (MEP) surface was determined by using the same level. The docking study of the Cu (II) complex to the binding site of the target protein (the template structure S. cerevisiae isomaltase) is fulfilled. Natural bond orbital (NBO) analysis was used to investigate the hyperconjugative interactions, inter‐ and intra‐molecular bonding and to determine coordination around Cu (II) ion. Finally, present work is the first remarkable scientific report of mixed‐ligand (H2FDCA and 4(5)MeI) Cu (II) complex as novel drug candidate for DM II. It is also determined that microscopic third?NLO parameters for the Cu (II) complex is remarkable.  相似文献   

8.
Aromatic polycarboxylate linkers provide structural rigidity and strong interactions among the metal centre and the carboxylate O atoms. A new three‐dimensional coordination polymer namely, catena‐poly[potassium [tetraaqua(μ‐5‐sulfobenzene‐1,3‐dicarboxylato)zinc(II)]], {K[Zn(C8H3O7S)(H2O)4]}n or {K[Zn(SIP)(H2O)4]}n, where SIP is 5‐sulfobenzene‐1,3‐dicarboxylate or 5‐sulfoisophthalate, was obtained and characterized by elemental analysis and IR vibrational spectroscopy, and the single‐crystal structure was determined by X‐ray diffraction analysis. The compound crystallizes in the monoclinic space group P21/n with Z = 4. Topological analysis revealed that K—O interactions form a two‐dimensional network, which is uninodal 4‐connected and can be described with a point symbol (44.62), and this plane network is classified as sql/Shubnikov . The layers are connected by Zn2+ ions coordinated to the SIP linker, forming a three‐dimensional network. This net is a trinodal (3,5,6)‐connected system with point symbol (3.44.52.62.73.83).(3.44.52.62.7).(3.72).  相似文献   

9.
The title compound, [MnCl2(C24H20N6)], has been synthesized and characterized based on the multifunctional ligand 2,5‐bis(2,2′‐bipyridyl‐6‐yl)‐3,4‐diazahexa‐2,4‐diene (L). The MnII centre is five‐coordinate with an approximately square‐pyramidal geometry. The L ligand acts as a tridendate chelating ligand. The mononuclear molecules are bridged into a one‐dimensional chain by two C—H...Cl hydrogen bonds. These chains are assembled into a two‐dimensional layer through π–π stacking interactions between adjacent uncoordinated bipyridyl groups. Furthermore, a three‐dimensional supramolecular framework is attained through π–π stacking interactions between adjacent coordinated bipyridyl groups.  相似文献   

10.
The crystal structures and packing features of two homologous Meyer's bicyclic lactams with fused pyrrolidone and medium‐sized perhydropyrimidine rings, namely, 8a‐phenyl‐2,3,4,7,8,8a‐hexahydropyrrolo[1,2‐a]pyrimidin‐6(1H)‐one, C13H16N2O ( 1 ), and 8a‐(4‐methylphenyl)‐2,3,4,7,8,8a‐hexahydropyrrolo[1,2‐a]pyrimidin‐6(1H)‐one, C14H18N2O ( 2 ), were elucidated, and Hirshfeld surface plots were calculated and drawn for visualization and a deeper analysis of the intermolecular noncovalent interactions. Molecules of 1 and 2 are weakly linked by intermolecular C=O…H—N hydrogen bonds into chains, which are in turn weakly linked by other C=O…H—Car interactions. The steric volume of the substituent significantly affects the crystal packing pattern.  相似文献   

11.
Transition metal atoms can be bridged by aliphatic dicarboxylate ligands to produce chains, layers and frameworks. The reaction of copper sulfate with succinic acid (H2succ) and N ,N‐ diethylethylenediamine (deed) in basic solution produces the complex catena‐poly[[[(N ,N‐diethylethylenediamine‐κ2N ,N ′)copper(II)]‐μ‐succinato‐κ2O 1:O 4] tetrahydrate], {[Cu(C4H4O4)(C6H16N2)]·4H2O}n or {[Cu(succ)(deed)]·4H2O}n . Each carboxylate group of the succinate ligand coordinates to a CuII atom in a monodentate fashion, giving rise to a square‐planar coordination environment. The succinate ligands bridge the CuII centres to form one‐dimensional polymeric chains. Hydrogen bonds between the ligands and water molecules link these chains into sheets that lie in the ab plane. Density functional theory (DFT) calculations were used to support the experimental data. From these calculations, a good linear correlation was observed between the experimental and theoretically predicted structural and spectroscopic parameters (R 2 ∼ 0.97).  相似文献   

12.
A new oxamido‐bridged dicopper(II) complex formulated as [Cu2(ndpox)(bpy)(CH3OH)2]‐ (ClO4), where H3ndpox is N‐(2‐hydroxy‐5‐nitrophenyl)‐N′‐[3‐(diethylamino)propyl]oxamide; and bpy represents 2,2′‐bipyridine, was synthesized and structurally characterized using X‐ray single‐crystal diffraction and other methods. In the molecule, the endo‐ and the exo‐copper(II) ions bridged by the cis ‐ndpox3− ligand are in {N3O2} and {N2O3} square‐ pyramidal environments, respectively. There is a three‐dimensional hydrogen bonding network dominated by O‐H···O and C‐H···O interactions in the crystal. The reactivity toward DNA/protein bovine serum albumin (BSA) revealed that the complex could interact with herring sperm DNA (HS‐DNA) through the intercalation mode, and effectively quench the intrinsic fluorescence of BSA via a static process. Cytotoxicity studies suggest that the complex displays selective cancer cell antiproliferative activity. The present investigation confirmed that the combined effects of both electron‐withdrawing and hydrophobic groups on the bridging ligand in the dicopper(II) complex systems can increase DNA/BSA‐binding ability and in vitro anticancer activity.  相似文献   

13.
Four tetramethyl 4,4′‐(ethane‐1,2‐diylidene)bis[1‐R‐5‐oxo‐4,5‐dihydro‐1H‐pyrrole‐2,3‐dicarboxylate] compounds, denoted class (1), are a series of conjugated buta‐1,3‐dienes substituted with a heterocyclic group. The compounds can be used as dyes and pigments due to their long‐range conjugated systems. Four structures were studied using 1H NMR, 13C NMR and mass spectroscopy, viz. with R = 2,4,6‐trimethylphenyl, (1a), R = cyclohexyl, (1b), R = tert‐butyl, (1c), and R = isopropyl, (1d). A detailed discussion is presented regarding the characteristics of the three‐dimensional structures based on NMR analysis and the X‐ray crystal structure of (1a), namely tetramethyl 4,4′‐(ethane‐1,2‐diylidene)bis[5‐oxo‐1‐(2,4,6‐trimethylphenyl)‐4,5‐dihydro‐1H‐pyrrole‐2,3‐dicarboxylate], C36H36N2O10. The conjugation plane and stability were also studied via quantum chemical calculations.  相似文献   

14.
Photocatalysis is a green technology for the treatment of all kinds of contaminants and has advantages over other treatment methods. Recently, much effort has been devoted to developing new photocatalytic materials based on metal–organic frameworks for use in the degradation of many kinds of organic contaminants. With the aim of searching for more effective photocatalysts, the title three‐dimensional coordination polymer, [Cd2(C8H4O4)2(C18H16N2O2)]n, was prepared. The asymmetric unit contains one CdII cation, one benzene‐1,2‐dicarboxylate anion (denoted L2−) and half of a centrosymmetric 1,4‐bis(pyridin‐3‐ylmethoxy)benzene ligand (denoted bpmb). Each CdII centre is five‐coordinated by four carboxylate O atoms from two L2− ligands and by one N atom from a bpmb ligand, forming a disordered pentagonal pyramidal coordination geometry. The CdII centres are interlinked by L2− ligands to form a one‐dimensional [Cd2L2]n chain. Adjacent chains are further connected by bpmb linkers, giving rise to a two‐dimensional network, and these networks are pillared by bpmb to afford a three‐dimensional framework with a 33.42.63.71.81 topology. Each grid in the framework has large channels which are filled mainly by the two other equivalent frameworks to form a threefold interpenetrating net. The compound exhibits relatively good photocatalytic activity towards the degradation of methylene blue in aqueous solution under UV irradiation.  相似文献   

15.
A new three‐dimensional interpenetrated CdII–organic framework based on 3,3′‐azodibenzoic acid [3,3′‐(diazenediyl)dibenzoic acid, H2azdc] and the auxiliary flexible ligand 1,4‐bis(1H‐imidazol‐1‐yl)butane (bimb), namely poly[[bis[μ2‐1,4‐bis(1H‐imidazol‐1‐yl)butane‐κ2N3:N3′][μ2‐3,3′‐(diazenediyl)dibenzoato‐κ2O:O′]cadmium(II)] monohydrate], {[Cd(C14H8N2O4)(C10H14N2)2]·H2O}n, (1), was obtained by a typical solution reaction in mixed solvents (water and N,N′‐dimethylformamide). Each CdII centre is six‐coordinated by two O atoms of bis‐monodentate bridging carboxylate groups from two azdc2− ligands and by four N atoms from four bimb ligands, forming an octahedral coordination environment. The CdII ions are connected by the bimb ligands, resulting in two‐dimensional (4,4) layers, which are further pillared by the azdc2− ligands, affording a threefold interpenetrated three‐dimensional α‐Po topological framework with the Schläfli symbol 41263. The thermal stability and solid‐state fluorescence properties of (1) have been investigated.  相似文献   

16.
Despite the large number of reported crystalline structures of coordination complexes bearing pyridines as ligands, the relevance of π–π interactions among these hereroaromatic systems in the stabilization of their supramolecular structures and properties is not very well documented in the recent literature. The title compound, [CoCl2(C5H6N2)2], was obtained as bright‐blue crystals suitable for single‐crystal X‐ray diffraction analysis from the reaction of 4‐aminopyridine with cobalt(II) chloride in ethanol. The new complex was fully characterized by a variety of spectroscopic techniques and single‐crystal X‐ray diffraction. The crystal structure showed a tetrahedral complex stabilized mainly by bidimensional motifs constructed by π–π interactions with large horizontal displacements between the 4‐aminopyridine units, and N—H…Cl hydrogen bonds. Other short contacts, such as C—H…Cl interactions, complete the three‐dimensional arrangement. The supramolecular investigation was extended by statistical studies using the Cambridge Structural Database and a Hirshfeld surface analysis.  相似文献   

17.
Coordination polymers constructed from conjugated organic ligands and metal ions with a d10 electronic configuration exhibit intriguing properties for chemical sensing and photochemistry. A ZnII‐based coordination polymer, namely poly[aqua(μ6‐biphenyl‐3,3′,5,5′‐tetracarboxylato)(μ2‐4,4′‐bipyridine)dizinc(II)], [Zn2(C16H6O8)(C10H8N2)(H2O)2]n or [Zn2(m,m‐bpta)(4,4′‐bipy)(H2O)2]n, was synthesized from a mixture of biphenyl‐3,3′,5,5′‐tetracarboxylic acid [H4(m,m‐bpta)], 4,4′‐bipyridine (4,4′‐bipy) and Zn(NO3)2·6H2O under solvothermal conditions. The title complex has been structurally characterized by IR spectroscopy, elemental analysis, single‐crystal X‐ray diffraction and powder X‐ray diffraction analysis, and features a μ6‐coordination mode. The ZnII ions adopt square‐pyramidal geometries and are bridged by two synsyn carboxylate groups to form [Zn2(COO)2] secondary buildding units (SBUs). The SBUs are crosslinked by (m,m‐bpta)4? ligands to produce a two‐dimensional grid‐like layer that exhibits a stair‐like structure along the a axis. Adjacent layers are linked by 4,4′‐bipy ligands to form a three‐dimensional network with a {44.610.8}{44.62} topology. In the solid state, the complex displays a strong photoluminescence and an excellent solvent stability. In addition, the luminescence sensing results indicate a highly selective and sensitive sensing for Fe3+ ions.  相似文献   

18.
Metal–organic frameworks (MOFs) have attracted much interest in the fields of gas separation and storage, catalysis synthesis, nonlinear optics, sensors, luminescence, magnetism, photocatalysis gradation and crystal engineering because of their diverse properties and intriguing topologies. A Cu–MOF, namely poly[[(μ2‐succinato‐κ2O:O′){μ2‐tris[4‐(1,2,4‐triazol‐1‐yl)phenyl]amine‐κ2N:N′}copper(II)] dihydrate], {[Cu(C4H4O4)(C24H18N10)]·2H2O}n or {[Cu(suc)(ttpa)]·2H2O}n, (I), was synthesized by the hydrothermal method using tris[4‐(1,2,4‐triazol‐1‐yl)phenyl]amine (ttpa) and succinate (suc2?), and characterized by IR, powder X‐ray diffraction (PXRD), luminescence, optical band gap and valence band X‐ray photoelectron spectroscopy (VB XPS). Cu–MOF (I) shows a twofold interpenetrating 4‐coordinated three‐dimensional CdSO4 topology with point symbol {65·8}. It presents good photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB) under visible‐light irradiation. A photocatalytic mechanism was proposed and confirmed.  相似文献   

19.
A tridentate Schiff base ligand, (E)‐3‐((2‐hydroxy‐3‐methoxybenzylidene)amino)‐2‐methylquinazolin‐4(3H)‐one [HL], and its mixed‐ligand Ni(II) complex [Ni(L)(imi)], were synthesized and fully characterized using elemental analysis, FT‐IR, UV–Vis and 1HNMR spectroscopy techniques. The structure of the synthesized ligand and complex was determined with single crystal X‐ray diffraction method. In the complex, a square planner geometry was observed around the Ni(II) central atom coordinated with the donor atoms of the Schiff base ligand and one nitrogen of imidazole group. In addition, the catalytic activity of the complex on the three‐component condensation of hydrazine hydrate with phthalic anhydride and dimedone to obtain 2H–indazolo[2,1‐b]phthalazine‐triones was investigated. Furthermore, in‐vitro antimicrobial studies were performed that indicated the great antibacterial activities of the Ni(II) complex against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa and Bacillus cereus bacteria.  相似文献   

20.
Cyanide as a bridge can be used to construct homo‐ and heterometallic complexes with intriguing structures and interesting magnetic properties. These ligands can generate diverse structures, including clusters, one‐dimensional chains, two‐dimensional layers and three‐dimensional frameworks. The title cyanide‐bridged CuII–CoIII heterometallic compound, [CuIICoIII(CN)6(C4H11N2)(H2O)]n, has been synthesized and characterized by single‐crystal X‐ray diffraction analysis, magnetic measurement, thermal study, vibrational spectroscopy (FT–IR) and scanning electron microscopy/energy‐dispersive X‐ray spectroscopy (SEM–EDS). The crystal structure analysis revealed that it has a two‐dimensional grid‐like structure built up of [Cu(Hpip)(H2O)]3+ cations (Hpip is piperazinium) and [Co(CN)6]3− anions that are linked through bridging cyanide ligands. The overall three‐dimensional supramolecular network is expanded by a combination of interlayer O—H...N and N—H...O hydrogen bonds involving the coordinated water molecules and the N atoms of the nonbridging cyanide groups and monodentate cationic piperazinium ligands. A magnetic investigation shows that antiferromagnetic interactions exist in the title compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号