首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dibenz[b,f]azepine (DBA) is a privileged 6‐7‐6 tricyclic ring system of importance in both organic and medicinal chemistry. Benzo[b]pyrimido[5,4‐f]azepines (BPAs), which also contain a privileged 6‐7‐6 ring system, are less well investigated, probably because of a lack of straightforward and versatile methods for their synthesis. A simple and versatile synthetic approach to BPAs based on intramolecular Friedel–Crafts alkylation has been developed. A group of closely‐related benzo[b]pyrimido[5,4‐f]azepine derivatives, namely (6RS)‐4‐chloro‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3, (I), (6RS)‐4‐chloro‐8‐hydroxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C14H14ClN3O, (II), (6RS)‐4‐<!?tlsb=‐0.14pt>chloro‐8‐methoxy‐6,11‐dimethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C15H16ClN3O, (III), and (6RS)‐4‐chloro‐8‐methoxy‐6,11‐dimethyl‐2‐phenyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, C21H20ClN3O, (IV), has been prepared and their structures compared with the recently published structure [Acosta‐Quintero et al. (2015). Eur. J. Org. Chem. pp. 5360–5369] of (6RS)‐4‐chloro‐2,6,8,11‐tetramethyl‐6,11‐dihydro‐5H‐benzo[b]pyrimido[5,4‐f]azepine, (V). All five compounds crystallize as racemic mixtures and they have very similar molecular conformations, with the azepine ring adopting a boat‐type conformation in each case, although the orientation of the methoxy substituent in each of (III) and (IV) is different. The supramolecular assemblies in (II) and (IV) depend upon hydrogen bonds of the O—H...N and C—H...π(arene) types, respectively, those in (I) and (V) depend upon π–π stacking interactions involving pairs of pyrimidine rings, and that in (III) depends upon a π–π stacking interaction involving pairs of phenyl rings. Short C—Cl...π(pyrimidine) contacts are present in (I), (II) and (IV) but not in (III) or (V).  相似文献   

2.
Hydrazone derivatives exhibit a wide range of biological activities, while pyrazolo[3,4‐b]quinoline derivatives, on the other hand, exhibit both antimicrobial and antiviral activity, so that all new derivatives in these chemical classes are potentially of value. Dry grinding of a mixture of 2‐chloroquinoline‐3‐carbaldehyde and 4‐methylphenylhydrazinium chloride gives (E)‐1‐[(2‐chloroquinolin‐3‐yl)methylidene]‐2‐(4‐methylphenyl)hydrazine, C17H14ClN3, (I), while the same regents in methanol in the presence of sodium cyanoborohydride give 1‐(4‐methylphenyl)‐4,9‐dihydro‐1H‐pyrazolo[3,4‐b]quinoline, C17H15N3, (II). The reactions between phenylhydrazinium chloride and either 2‐chloroquinoline‐3‐carbaldehyde or 2‐chloro‐6‐methylquinoline‐3‐carbaldehyde give, respectively, 1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C16H11N3, (III), which crystallizes in the space group Pbcn as a nonmerohedral twin having Z′ = 3, or 6‐methyl‐1‐phenyl‐1H‐pyrazolo[3,4‐b]quinoline, C17H13N3, (IV), which crystallizes in the space group R. The molecules of compound (I) are linked into sheets by a combination of N—H…N and C—H…π(arene) hydrogen bonds, and the molecules of compound (II) are linked by a combination of N—H…N and C—H…π(arene) hydrogen bonds to form a chain of rings. In the structure of compound (III), one of the three independent molecules forms chains generated by C—H…π(arene) hydrogen bonds, with a second type of molecule linked to the chains by a second C—H…π(arene) hydrogen bond and the third type of molecule linked to the chain by multiple π–π stacking interactions. A single C—H…π(arene) hydrogen bond links the molecules of compound (IV) into cyclic centrosymmetric hexamers having (S6) symmetry, which are themselves linked into a three‐dimensional array by π–π stacking interactions.  相似文献   

3.
Pyrazolo[1,5‐c]quinazolines are fused‐quinazoline derivatives which have been reported as potential agents against neurological disorders. The normal synthesis routes to these compounds require harsh reaction conditions, long reaction times or multistep sequences. The title compound, C18H15N3S, has been prepared under very mild conditions by condensation of thiochroman‐4‐one with 5‐(2‐aminophenyl)‐1H‐pyrazole, which had itself been prepared by the reaction of hydrazine hydrate with 4‐hydroxyquinoline mediated by a brief period of microwave heating. Within the molecule in the crystal structure, the reduced pyrimidine ring adopts an envelope conformation, whereas the thiane ring adopts a half‐chair conformation. Molecules are linked into sheets by a combination of one N—H...S hydrogen bond and two independent C—H...π(arene) hydrogen bonds, which utilize the same aryl ring as the acceptor, with one C—H bond donating to each face of the ring. Comparisons are made with some related compounds.  相似文献   

4.
A concise, efficient and versatile route from simple starting materials to tricyclic tetrahydro‐1‐benzazepines carrying [a]‐fused heterocyclic units is reported. Thus, the easily accessible methyl 2‐[(2‐allyl‐4‐chlorophenyl)amino]acetate, (I), was converted, via (2RS,4SR)‐7‐chloro‐2,3,4,5‐tetrahydro‐1,4‐epoxy‐1‐benzo[b]azepine‐2‐carboxylate, (II), to the key intermediate methyl (2RS,4SR)‐7‐chloro‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (III). Chloroacetylation of (III) provided the two regioisomers methyl (2RS,4SR)‐7‐chloro‐1‐(2‐chloroacetyl)‐4‐hydroxy‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, (IVa), and methyl (2RS,4SR)‐7‐chloro‐4‐(2‐chloroacetoxy)‐2,3,4,5‐tetrahydro‐1H‐benzo[b]azepine‐2‐carboxylate, C14H15Cl2NO4, (IVb), as the major and minor products, respectively, and further reaction of (IVa) with aminoethanol gave the tricyclic target compound (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐3‐(2‐hydroxyethyl)‐2,3,4a,5,6,7‐hexahydrobenzo[f]pyrazino[1,2‐a]azepine‐1,4‐dione, C15H17ClN2O4, (V). Reaction of ester (III) with hydrazine hydrate gave the corresponding carbohydrazide (VI), which, with trimethoxymethane, gave a second tricyclic target product, (4aRS,6SR)‐9‐chloro‐6‐hydroxy‐4a,5,6,7‐tetrahydrobenzo[f][1,2,4]triazino[4,5‐a]azepin‐4(3H)‐one, C12H12ClN3O2, (VII). Full spectroscopic characterization (IR, 1H and 13C NMR, and mass spectrometry) is reported for each of compounds (I)–(III), (IVa), (IVb) and (V)–(VII), along with the molecular and supramolecular structures of (IVb), (V) and (VII). In each of (IVb), (V) and (VII), the azepine ring adopts a chair conformation and the six‐membered heterocyclic rings in (V) and (VII) adopt approximate boat forms. The molecules in (IVb), (V) and (VII) are linked, in each case, into complex hydrogen‐bonded sheets, but these sheets all contain a different range of hydrogen‐bond types: N—H…O, C—H…O, C—H…N and C—H…π(arene) in (IVb), multiple C—H…O hydrogen bonds in (V), and N—H…N, O—H…O, C—H…N, C—H…O and C—H…π(arene) in (VII).  相似文献   

5.
(1RS,2SR,3RS,4SR,5RS)‐2,4‐Dibenzoyl‐1,3,5‐triphenylcyclohexan‐1‐ol or (4‐hydroxy‐2,4,6‐triphenylcyclohexane‐1,3‐diyl)bis(phenylmethanone), C38H32O3, (1), is formed as a by‐product in the NaOH‐catalyzed synthesis of 1,3,5‐triphenylpentane‐1,5‐dione from acetophenone and benzaldehyde. Single crystals of the chloroform hemisolvate, C38H32O3·0.5CHCl3, were grown from chloroform. The structure has triclinic (P) symmetry. One diastereomer [as a pair of (1RS,2SR,3RS,4SR,5RS)‐enantiomers] of (1) has been found in the crystal structure and confirmed by NMR studies. The dichoromethane hemisolvate has been reported previously [Zhang et al. (2007). Acta Cryst. E 63 , o4652]. (1RS,2SR,3RS,4SR,5RS)‐2,4‐Dibenzoyl‐3,5‐bis(2‐methoxyphenyl)‐1‐phenylcyclohexan‐1‐ol or [4‐hydroxy‐2,6‐bis(2‐methoxyphenyl)‐4‐phenylcyclohexane‐1,3‐diyl]bis(phenylmethanone), C40H36O5, (2), is also formed as a by‐product, under the same conditions, from acetophenone and 2‐methoxybenzaldehyde. Crystals of (2) have been grown from chloroform. The structure has orthorhombic (Pca21) symmetry. A diastereomer of (2) possesses the same configuration as (1). In both structures, the cyclohexane ring adopts a chair conformation with all bulky groups (benzoyl, phenyl and 2‐methoxyphenyl) in equatorial positions. The molecules of (1) and (2) both display one intramolecular O—H...O hydrogen bond.  相似文献   

6.
A concise and efficient synthesis of a series of amino‐substituted benzimidazole–pyrimidine hybrids has been developed, starting from the readily available N4‐(2‐aminophenyl)‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine. In each of N5‐benzyl‐6‐methoxy‐4‐(2‐phenyl‐1H‐benzo[d]imidazol‐1‐yl)pyrimidine‐2,5‐diamine, C25H22N6O, (I), 6‐methoxy‐N5‐(4‐methoxybenzyl)‐4‐[2‐(4‐methoxyphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C27H26N6O3, (III), 6‐methoxy‐N5‐(4‐nitrobenzyl)‐4‐[2‐(4‐nitrophenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, C25H20N8O5, (IV), the molecules are linked into three‐dimensional framework structures, using different combinations of N—H…N, N—H…O, C—H…O, C—H…N and C—H…π hydrogen bonds in each case. Oxidative cleavage of 6‐methoxy‐N5‐(4‐methylbenzyl)‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, (II), with diiodine gave 6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidine‐2,5‐diamine, which crystallized as a monohydrate, C19H18N6O·H2O, (V), and reaction of (V) with trifluoroacetic acid gave two isomeric products, namely N‐{5‐amino‐6‐methoxy‐6‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐2‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as an ethyl acetate monosolvate, C21H17F3N6O2·C4H8O2, (VI), and N‐{2‐amino‐6‐methoxy‐4‐[2‐(4‐methylphenyl)‐1H‐benzo[d]imidazol‐1‐yl]pyrimidin‐5‐yl}‐2,2,2‐trifluoroacetamide, which crystallized as a methanol monosolvate, C21H17F3N6O2·CH4O, (VIIa). For each of (V), (VI) and (VIIa), the supramolecular assembly is two‐dimensional, based on different combinations of O—H…N, N—H…O, N—H…N, C—H…O and C—H…π hydrogen bonds in each case. Comparisons are made with some related structures.  相似文献   

7.
4‐Antipyrine [4‐amino‐1,5‐dimethyl‐2‐phenyl‐1H‐pyrazol‐3(2H)‐one] and its derivatives exhibit a range of biological activities, including analgesic, antibacterial and anti‐inflammatory, and new examples are always of potential interest and value. 2‐(4‐Chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, C19H18ClN3O2, (I), crystallizes with Z′ = 2 in the space group P, whereas its positional isomer 2‐(2‐chlorophenyl)‐N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)acetamide, (II), crystallizes with Z′ = 1 in the space group C2/c; the molecules of (II) are disordered over two sets of atomic sites having occupancies of 0.6020 (18) and 0.3980 (18). The two independent molecules of (I) adopt different molecular conformations, as do the two disorder components in (II), where the 2‐chlorophenyl substituents adopt different orientations. The molecules of (I) are linked by a combination of N—H…O and C—H…O hydrogen bonds to form centrosymmetric four‐molecule aggregates, while those of (II) are linked by the same types of hydrogen bonds forming sheets. The related compound N‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)‐2‐(3‐methoxyphenyl)acetamide, C20H21N3O3, (III), is isomorphous with (I) but not strictly isostructural; again the two independent molecules adopt different molecular conformations, and the molecules are linked by N—H…O and C—H…O hydrogen bonds to form ribbons. Comparisons are made with some related structures, indicating that a hydrogen‐bonded R22(10) ring is the common structural motif.  相似文献   

8.
Four imidazo[2,1‐b][1,3,4]thiadiazoles containing a simply‐substituted 6‐aryl group have been synthesized by reaction of 2‐amino‐1,3,4‐thiadiazoles with bromoacetylarenes using microwave irradiation and brief reaction times. 6‐(2‐Chlorophenyl)imidazo[2,1‐b][1,3,4]thiadiazole, C10H6ClN3S, (I), 6‐(2‐chlorophenyl)‐2‐methylimidazo[2,1‐b][1,3,4]thiadiazole, C11H8ClN3S, (II), 6‐(3,4‐dichlorophenyl)imidazo[2,1‐b][1,3,4]thiadiazole, C10H5Cl2N3S, (III), and 6‐(4‐fluoro‐3‐methoxyphenyl)‐2‐methylimidazo[2,1‐b][1,3,4]thiadiazole, C12H10FN3OS, (IV), crystallize with Z′ values of 2, 1, 1 and 2 respectively. The molecular skeletons are all nearly planar and the dihedral angles between the imidazole and aryl rings are 1.51 (8) and 7.28 (8)° in (I), 9.65 (7)° in (II), 10.44 (8)° in (III), and 1.05 (8) and 7.21 (8)° in (IV). The molecules in (I) are linked by three independent C—H...N hydrogen bonds to form ribbons containing alternating R22(8) and R44(18) rings, and these ribbons are linked into a three‐dimensional array by three independent π‐stacking interactions. Both (II) and (III) contain centrosymmetric dimers formed by π‐stacking interactions but hydrogen bonds are absent, and the molecules of (IV) are linked into centrosymmetric R22(8) dimers by C—H...N hydrogen bonds. Comparisons are made with a number of related compounds.  相似文献   

9.
The reaction of 5‐chloro‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde and N‐benzylmethylamine under microwave irradiation gives 5‐[benzyl(methyl)amino]‐3‐methyl‐1‐phenyl‐1H‐pyrazole‐4‐carbaldehyde, C19H19N3O, (I). Subsequent reactions under basic conditions, between (I) and a range of acetophenones, yield the corresponding chalcones. These undergo cyclocondensation reactions with hydrazine to produce reduced bipyrazoles which can be N‐formylated with formic acid or N‐acetylated with acetic anhydride. The structures of (I) and of representative examples from this reaction sequence are reported, namely the chalcone (E )‐3‐{5‐[benzyl(methyl)amino]‐3‐methyl‐1‐phenyl‐1H‐pyrazol‐4‐yl}‐1‐(4‐bromophenyl)prop‐2‐en‐1‐one, C27H24BrN3O, (II), the N‐formyl derivative (3RS )‐5′‐[benzyl(methyl)amino]‐3′‐methyl‐1′,5‐diphenyl‐3,4‐dihydro‐1′H ,2H‐[3,4′‐bipyrazole]‐2‐carbaldehyde, C28H27N5O, (III), and the N‐acetyl derivative (3RS )‐2‐acetyl‐5′‐[benzyl(methyl)amino]‐5‐(4‐methoxyphenyl)‐3′‐methyl‐1′‐phenyl‐3,4‐dihydro‐1′H ,2H‐[3,4′‐bipyrazole], which crystallizes as the ethanol 0.945‐solvate, C30H31N5O2·0.945C2H6O, (IV). There is significant delocalization of charge from the benzyl(methyl)amino substituent onto the carbonyl group in (I), but not in (II). In each of (III) and (IV), the reduced pyrazole ring is modestly puckered into an envelope conformation. The molecules of (I) are linked by a combination of C—H…N and C—H…π(arene) hydrogen bonds to form a simple chain of rings; those of (III) are linked by a combination of C—H…O and C—H…N hydrogen bonds to form sheets of R 22(8) and R 66(42) rings, and those of (IV) are linked by a combination of O—H…N and C—H…O hydrogen bonds to form a ribbon of edge‐fused R 24(16) and R 44(24) rings.  相似文献   

10.
An efficient synthesis of 1‐arylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐ones, involving the diazotization of 3‐amino‐4‐arylamino‐1H‐isochromen‐1‐ones in weakly acidic solution, has been developed and the spectroscopic characterization and crystal structures of four examples are reported. The molecules of 1‐phenylisochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H9N3O2, (I), are linked into sheets by a combination of C—H…N and C—H…O hydrogen bonds, while the structures of 1‐(2‐methylphenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C16H11N3O2, (II), and 1‐(3‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, C15H8ClN3O2, (III), each contain just one hydrogen bond which links the molecules into simple chains, which are further linked into sheets by π‐stacking interactions in (II) but not in (III). In the structure of 1‐(4‐chlorophenyl)isochromeno[3,4‐d][1,2,3]triazol‐5(1H)‐one, (IV), isomeric with (III), a combination of C—H…O and C—H…π(arene) hydrogen bonds links the molecules into sheets. When compound (II) was exposed to a strong acid in methanol, quantitative conversion occurred to give the ring‐opened transesterification product methyl 2‐[4‐hydroxy‐1‐(2‐methylphenyl)‐1H‐1,2,3‐triazol‐5‐yl]benzoate, C17H15N3O3, (V), where the molecules are linked by paired O—H…O hydrogen bonds to form centrosymmetric dimers.  相似文献   

11.
Substituted naphthofurans and benzofurans are easily accessible by treatment of naphthols/substituted phenols with nitroallylic acetates through a substitution–elimination process promoted by cesium carbonate. Reactions between naphthols and aromatic/heteroaromatic‐substituted nitroallylic acetates gave the desired functionalized naphthofurans in high to excellent chemical yields (14–97 %). On the other hand, treatment of phenol derivatives (i.e., 3‐dimethylamino‐, 3‐methoxy‐, and 3,5‐dimethoxyphenol) with various nitroallylic acetates afforded the corresponding benzofurans in moderate to good chemical yields (24–91 %). The reaction proceeded through an interesting Friedel–Crafts SN2′ process followed by intramolecular oxa‐Michael cyclization and subsequent aromatization. A plot of log (k/kH) against Hammett constants σp showed satisfactory linearity with a positive ρ value, indicating that the initial Friedel–Crafts‐type SN2′ process constituted the rate‐determining step. This methodology has been applied to the synthesis of various novel C2 and C3 symmetric bis‐ and trisfurans by using catechol and phloroglucinol as the nucleophilic partners. The reactivity decreased when alkyl‐substituted nitroallylic acetate systems were used. This might be related to the decreased electrophilic character of these substrates.  相似文献   

12.
A simple and effective two‐step approach to tricyclic pyrimidine‐fused benzazepines has been adapted to give the tetracyclic analogues. In (RS)‐8‐chloro‐6‐methyl‐1,2,6,7‐tetrahydropyrimido[5′,4′:6,7]azepino[3,2,1‐hi]indole, C15H14ClN3, (I), the five‐membered ring adopts an envelope conformation, as does the reduced pyridine ring in (RS)‐9‐chloro‐7‐methyl‐2,3,7,8‐tetrahydro‐1H‐pyrimido[5′,4′:6,7]azepino[3,2,1‐ij]quinoline, C16H16ClN3, (II). However, the seven‐membered rings in (I) and (II) adopt very different conformations, with the result that the methyl substituent occupies a quasi‐axial site in (I) but a quasi‐equatorial site in (II). The molecules of (I) are linked by C—H...N hydrogen bonds to form C(5) chains and inversion‐related pairs of chains are linked by a π–π stacking interaction. A combination of a C—H...π hydrogen bond and two C—Cl...π interactions links the molecules of (II) into complex sheets. Comparisons are made with some similar fused heterocyclic compounds.  相似文献   

13.
Six closely related N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]arylamides have been synthesized and structurally characterized, together with a representative reaction intermediate. In each of N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]benzamide, C20H16ClNO2S, (I), N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐4‐phenylbenzamide, C26H20ClNO2S, (II), and 2‐bromo‐N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]benzamide, C20H15BrClNO2S, (III), the molecules are disordered over two sets of atomic sites, with occupancies of 0.894 (8) and 0.106 (8) in (I), 0.832 (5) and 0.168 (5) in (II), and 0.7006 (12) and 0.2994 (12) in (III). In each of N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2‐iodobenzamide, C20H15ClINO2S, (IV), and N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2‐methoxybenzamide, C21H18ClNO3S, (V), the molecules are fully ordered, but in N‐[3‐(2‐chlorobenzoyl)‐5‐ethylthiophen‐2‐yl]‐2,6‐difluorobenzamide, C20H14ClF2NO2S, (VI), which crystallizes with Z′ = 2 in the space group C2/c, one of the two independent molecules is fully ordered, while the other is disordered over two sets of atomic sites having occupancies of 0.916 (3) and 0.084 (3). All of the molecules in compounds (I)–(VI) exhibit an intramolecular N—H…O hydrogen bond. The molecules of (I) and (VI) are linked by C—H…O hydrogen bonds to form finite zero‐dimensional dimers, which are cyclic in (I) and acyclic in (VI), those of (III) are linked by C—H…π(arene) hydrogen bonds to form simple chains, and those of (IV) and (V) are linked into different types of chains of rings, built in each case from a combination of C—H…O and C—H…π(arene) hydrogen bonds. Two C—H…O hydrogen bonds link the molecules of (II) into sheets containing three types of ring. In benzotriazol‐1‐yl 3,4‐dimethoxybenzoate, C15H13N3O4, (VII), the benzoate component is planar and makes a dihedral angle of 84.51 (6)° with the benzotriazole unit. Comparisons are made with related compounds.  相似文献   

14.
Two spiro[indoline‐3,3′‐pyrrolizine] derivatives have been synthesized in good yield with high regio‐ and stereospecificity using one‐pot reactions between readily available starting materials, namely l ‐proline, substituted 1H‐indole‐2,3‐diones and electron‐deficient alkenes. The products have been fully characterized by elemental analysis, IR and NMR spectroscopy, mass spectrometry and crystal structure analysis. In (1′RS ,2′RS ,3SR ,7a′SR )‐2′‐benzoyl‐1‐hexyl‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine]‐1′‐carboxylic acid, C28H32N2O4, (I), the unsubstituted pyrrole ring and the reduced spiro‐fused pyrrole ring adopt half‐chair and envelope conformations, respectively, while in (1′RS ,2′RS ,3SR ,7a′SR )‐1′,2′‐bis(4‐chlorobenzoyl)‐5,7‐dichloro‐2‐oxo‐1′,2′,5′,6′,7′,7a′‐hexahydrospiro[indoline‐3,3′‐pyrrolizine], which crystallizes as a partial dichloromethane solvate, C28H20Cl4N2O3·0.981CH2Cl2, (II), where the solvent component is disordered over three sets of atomic sites, these two rings adopt envelope and half‐chair conformations, respectively. Molecules of (I) are linked by an O—H…·O hydrogen bond to form cyclic R 66(48) hexamers of (S 6) symmetry, which are further linked by two C—H…O hydrogen bonds to form a three‐dimensional framework structure. In compound (II), inversion‐related pairs of N—H…O hydrogen bonds link the spiro[indoline‐3,3′‐pyrrolizine] molecules into simple R 22(8) dimers.  相似文献   

15.
A new tetrazole–metal supramolecular compound, di‐μ‐chlorido‐bis(trichlorido{1‐[(1H‐tetrazol‐5‐yl‐κN2)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane}cadmium(II)), [Cd2(C8H16N6)2Cl8], has been synthesized and structurally characterized by single‐crystal X‐ray diffraction. In the structure, each CdII cation is coordinated by five Cl atoms (two bridging and three terminal) and by one N atom from the 1‐[(1H‐tetrazol‐5‐yl)methyl]‐1,4‐diazoniabicyclo[2.2.2]octane ligand, adopting a slightly distorted octahedral coordination geometry. The bridging bicyclo[2.2.2]octane and chloride ligands link the CdII cations into one‐dimensional ribbon‐like N—H...Cl hydrogen‐bonded chains along the b axis. An extensive hydrogen‐bonding network formed by N—H...Cl and C—H...Cl hydrogen bonds, and interchain π–π stacking interactions between adjacent tetrazole rings, consolidate the crystal packing, linking the poymeric chains into a three‐dimensional supramolecular network.  相似文献   

16.
In the title compound, C31H29N3O2, the reduced pyridine ring adopts a conformation intermediate between the envelope and half‐chair forms. The aryl rings of the benzyl and phenyl substituents are nearly parallel and overlap, indicative of an intramolecular π–π stacking interaction. A combination of two C—H...O hydrogen bonds and one C—H...N hydrogen bond links the molecules into a bilayer having tert‐butyl groups on both faces.<!?tpb=19.5pt>  相似文献   

17.
The title compound, C23H17N3O4S, crystallizes with Z′ = 3 in the space group P. Two of the three independent molecules are broadly similar in terms of both their molecular conformations and their participation in hydrogen bonds, but the third molecule differs from the other two in both of these respects. The molecules are linked by a combination of N—H...O, N—H...N, C—H...O, C—H...N and C—H...π(arene) hydrogen bonds to form a continuous three‐dimensional framework structure within which a centrosymmetric six‐molecule aggregate can be identified as a key structural element.  相似文献   

18.
The synthesis and characterization of three new dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine] compounds are reported, together with the crystal structures of two of them. (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐Chlorophenyl)‐1‐hexyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C28H30ClN3O2S2, (I), (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐1‐benzyl‐5‐methyl‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C30H26ClN3O2S2, (II), and (3RS,1′SR,2′SR,7a′SR)‐2′‐(4‐chlorophenyl)‐5‐fluoro‐2′′‐sulfanylidene‐5′,6′,7′,7a′‐tetrahydro‐2′H‐dispiro[indoline‐3,3′‐pyrrolizine‐1′,5′′‐thiazolidine]‐2,4′′‐dione, C22H17ClFN3O2S2, (III), were each isolated as a single regioisomer using a one‐pot reaction involving l ‐proline, a substituted isatin and (Z)‐5‐(4‐chlorobenzylidene)‐2‐sulfanylidenethiazolidin‐4‐one [5‐(4‐chlorobenzylidene)rhodanine]. The compositions of (I)–(III) were established by elemental analysis, complemented by high‐resolution mass spectrometry in the case of (I); their constitutions, including the definition of the regiochemistry, were established using NMR spectroscopy, and the relative configurations at the four stereogenic centres were established using single‐crystal X‐ray structure analysis. A possible reaction mechanism for the formation of (I)–(III) is proposed, based on the detailed stereochemistry. The molecules of (I) are linked into simple chains by a single N—H…N hydrogen bond, those of (II) are linked into a chain of rings by a combination of N—H…O and C—H…S=C hydrogen bonds, and those of (III) are linked into sheets by a combination of N—H…N and N—H…S=C hydrogen bonds.  相似文献   

19.
The wide diversity of applications of thiosemicarbazones and bis(thiosemicarbazones) has seen them used as anticancer and antitubercular agents, and as ligands in metal complexes designed to act as site‐specific radiopharmaceuticals. Molecules of 1,1′‐({[(ethane‐1,2‐diyl)dioxy](1,2‐phenylene)}bis(methanylylidene))bis(thiosemicarbazide) {alternative name: 2,2′‐[ethane‐1,2‐diylbis(oxy)]dibenzaldehyde bis(thiosemicarbazide)}, C18H20N6O2S2, (I), lie across twofold rotation axes in the space group C2/c, with an O—C—C—O torsion angle of −59.62 (13)° and a trans‐planar arrangement of the thiosemicarbazide fragments relative to the adjacent aryl rings. The molecules of (I) are linked by N—H...S hydrogen bonds to form sheets containing R24(38) rings and two types of R22(8) ring. In the N,N‐dimethylformamide disolvate, C18H20N6O2S2·2C3H7NO, (II), the independent molecular components all lie in general positions, but one of the solvent molecules is disordered over two sets of atomic sites having occupancies of 0.839 (3) and 0.161 (3). The O—C—C—O torsion angle in the ArOCH2CH2OAr component is −75.91 (14)° and the independent thiosemicarbazide fragments both adopt a cis‐planar arrangement relative to the adjacent aryl rings. The ArOCH2CH2OAr components in (II) are linked by N—H...S hydrogen bonds to form deeply puckered sheets containing R22(8), R24(8) and two types of R22(38) rings, and which contain cavities which accommodate all of the solvent molecules in the interior of the sheets. Comparisons are made with some related compounds.  相似文献   

20.
A concise and efficient synthesis of 6‐benzimidazolyl‐5‐nitrosopyrimidines has been developed using Schiff base‐type intermediates derived from N4‐(2‐aminophenyl)‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine. 6‐Methoxy‐N4‐{2‐[(4‐methylbenzylidene)amino]phenyl}‐5‐nitrosopyrimidine‐2,4‐diamine, (I), and N4‐{2‐[(ethoxymethylidene)amino]phenyl}‐6‐methoxy‐5‐nitrosopyrimidine‐2,4‐diamine, (III), both crystallize from dimethyl sulfoxide solution as the 1:1 solvates C19H18N6O2·C2H6OS, (Ia), and C14H16N6O3·C2H6OS, (IIIa), respectively. The interatomic distances in these intermediates indicate significant electronic polarization within the substituted pyrimidine system. In each of (Ia) and (IIIa), intermolecular N—H…O hydrogen bonds generate centrosymmetric four‐molecule aggregates. Oxidative ring closure of intermediate (I), effected using ammonium hexanitratocerate(IV), produced 4‐methoxy‐6‐[2‐(4‐methylphenyl‐1H‐benzimidazol‐1‐yl]‐5‐nitrosopyrimidin‐2‐amine, C19H16N6O2, (II) [Cobo et al. (2018). Private communication (CCDC 1830889). CCDC, Cambridge, England], where the extent of electronic polarization is much less than in (Ia) and (IIIa). A combination of N—H…N and C—H…O hydrogen bonds links the molecules of (II) into complex sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号