首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The monodomain model is a widely used model in electrocardiology to simulate the propagation of electrical potential in the myocardium. In this paper, we investigate a positive nonlinear control volume finite element scheme, based on Godunov's flux approximation of the diffusion term, for the monodomain model coupled to a physiological ionic model (the Beeler–Reuter model) and using an anisotropic diffusion tensor. In this scheme, degrees of freedom are assigned to vertices of a primal triangular mesh, as in conforming finite element methods. The diffusion term which involves an anisotropic tensor is discretized on a dual mesh using the diffusion fluxes provided by the conforming finite element reconstruction on the primal mesh and the other terms are discretized by means of an upwind finite volume method on the dual mesh. The scheme ensures the validity of the discrete maximum principle without any restriction on the transmissibility coefficients. By using a compactness argument, we obtain the convergence of the discrete solution and as a consequence, we get the existence of a weak solution of the original model. Finally, we illustrate by numerical simulations that the proposed scheme successfully removes nonphysical oscillations in the propagation of the wavefront and maintains conduction velocity close to physiological values.  相似文献   

2.
In this paper, we suggest a new vertex interpolation algorithm to improve an existing cell-centered finite volume scheme for nonlinear diffusion problems on general meshes. The new vertex interpolation algorithm is derived by applying a special limit procedure to the well-known MPFA-O method. Since the MPFA-O method for 3D cases has been addressed in some studies, the new vertex interpolation algorithm can be extended to 3D cases naturally. More interesting is that the solvability of the corresponding local system is proved under some assumptions. Additionally, we modify the edge flux approximation by an edge-based discretization of diffusion coefficient, and thus the improved scheme is free of the so-called numerical heat-barrier issue suffered by many existing cell-centered or hybrid schemes. The final scheme allows arbitrary continuous or discontinuous diffusion coefficients and can be applicable to arbitrary star-shaped polygonal meshes. A second-order convergence rate for the approximate solution and a first-order accuracy for the flux are observed in numerical experiments. In the comparative experiments with some existing vertex interpolation algorithms, the new algorithm shows obvious improvement on highly distorted meshes.  相似文献   

3.
徐国良 《计算数学》2002,24(3):363-374
1.引 言 本文的目的是用求解偏微分方程(PDE)的方法来消除离散三角形曲面的噪声,所使用的方程是热传导方程到曲面的推广.热传导方程应用于图像处理已有二十余年的历史,有关参考文献相当丰富(见[1,11,12,19]).众所周知,对于给定的初始图像ρ0,热传导方程  在τ时刻的解与用Gauss滤波器Gσ(x)= (当标准差σ=2τ,时)和ρ0作卷积的结果相同.容易看出Gρ和ρ0的卷积运算相当于对ρ0做加权平均,当标准离差σ变大时,该加权平均在一个较大的范围实现,这解释了热传导方程的滤波作用.近来热传导方程已推广到空间曲面[4,5]以及高维空间中的二维流形(见[3]),对  相似文献   

4.
In this paper, we consider the multi-dimensional asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations on distorted quadrilateral meshes. Different from the former scheme [J. Comput. Phys. 285(2015), 265-279] on uniform meshes, in this paper, in order to obtain the boundary fluxes based on the framework of unified gas kinetic scheme (UGKS), we use the real multi-dimensional reconstruction for the initial data and the macro-terms in the equation of the gray transfer equations. We can prove that the scheme is asymptotic preserving, and especially for the distorted quadrilateral meshes, a nine-point scheme [SIAM J. SCI. COMPUT. 30(2008), 1341-1361] for the diffusion limit equations is obtained, which is naturally reduced to standard five-point scheme for the orthogonal meshes. The numerical examples on distorted meshes are included to validate the current approach.  相似文献   

5.
Two-dimensional three-temperature (2-D 3-T) radiation diffusion equations are widely used to approximately describe the evolution of radiation energy within a multimaterial system and explain the exchange of energy among electrons, ions and photons. In this paper, we suggest a new positivity-preserving finite volume scheme for 2-D 3-T radiation diffusion equations on general polygonal meshes. The vertex unknowns are treated as primary ones for which the finite volume equations are constructed. The edge-midpoint and cell-centered unknowns are used as auxiliary ones and interpolated by the primary unknowns, which makes the final scheme a pure vertex-centered one. By comparison, most existing positivity-preserving finite volume schemes are cell-centered and based on the convex decomposition of the co-normal. Here, the co-normal decomposition is not convex in general, leading to a fixed stencil of the flux approximation and avoiding a certain search algorithm on complex grids. Moreover, the new scheme effectively alleviates the numerical heat-barrier issue suffered by most existing cell-centered or hybrid schemes in solving strongly nonlinear radiation diffusion equations. Numerical experiments demonstrate the second-order accuracy and the positivity of the solution on various distorted grids. For the problem without analytic solution, the contours of the numerical solutions obtained by our scheme on distorted meshes accord with those on smooth quadrilateral meshes.  相似文献   

6.
An unstructured mesh finite volume discretisation method for simulating diffusion in anisotropic media in two-dimensional space is discussed. This technique is considered as an extension of the fully implicit hybrid control-volume finite-element method and it retains the local continuity of the flux at the control volume faces. A least squares function recon-struction technique together with a new flux decomposition strategy is used to obtain an accurate flux approximation at the control volume face, ensuring that the overall accuracy of the spatial discretisation maintains second order. This paper highlights that the new technique coincides with the traditional shape function technique when the correction term is neglected and that it significantly increases the accuracy of the previous linear scheme on coarse meshes when applied to media that exhibit very strong to extreme anisotropy ratios. It is concluded that the method can be used on both regular and irregular meshes,and appears independent of the mesh quality.  相似文献   

7.
In this article, a cell‐centered finite volume scheme preserving maximum principle for diffusion equations with scalar coefficients is developed. The construction of the scheme consists of three steps: at first the discrete normal flux is obtained by a linear combination of two single‐sided fluxes, then the tangential term of the normal flux is modified by using a nonlinear combination of two single‐sided tangential fluxes, finally the auxiliary unknowns in the tangential fluxes are calculated by the convex combinations of the cell‐centered unknowns. It is proved that this nonlinear scheme satisfies the discrete maximum principle (DMP). Moreover, the existence of a solution of the nonlinear scheme is proved by using the Brouwer's fixed point theorem and the bounded estimates. Numerical experiments are presented to show that the scheme not only satisfies DMP, but also obtains the second‐order accuracy and conservation.© 2017 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 34: 80–96, 2018  相似文献   

8.
In this paper we first briefly review the very high order ADER methods for solving hyperbolic conservation laws. ADER methods use high order polynomial reconstruction of the solution and upwind fluxes as the building block. They use a first order upwind Godunov and the upwind second order weighted average (WAF) fluxes. As well known the upwind methods are more accurate than central schemes. However, the superior accuracy of the ADER upwind schemes comes at a cost, one must solve exactly or approximately the Riemann problems (RP). Conventional Riemann solvers are usually complex and are not available for many hyperbolic problems of practical interest. In this paper we propose to use two central fluxes, instead of upwind fluxes, as the building block in ADER scheme. These are the monotone first order Lax-Friedrich (LXF) and the third order TVD flux. The resulting schemes are called central ADER schemes. Accuracy of the new schemes is established. Numerical implementations of the new schemes are carried out on the scalar conservation laws with a linear flux, nonlinear convex flux and non-convex flux. The results demonstrate that the proposed scheme, with LXF flux, is comparable to those using first and second order upwind fluxes while the scheme, with third order TVD flux, is superior to those using upwind fluxes. When compared with the state of art ADER schemes, our central ADER schemes are faster, more accurate, Riemann solver free, very simple to implement and need less computer memory. A way to extend these schemes to general systems of nonlinear hyperbolic conservation laws in one and two dimensions is presented.  相似文献   

9.
This paper is concerned with the development of general-purpose algebraic flux correction schemes for continuous (linear and multilinear) finite elements. In order to enforce the discrete maximum principle (DMP), we modify the standard Galerkin discretization of a scalar transport equation by adding diffusive and antidiffusive fluxes. The result is a nonlinear algebraic system satisfying the DMP constraint. An estimate based on variational gradient recovery leads to a linearity-preserving limiter for the difference between the function values at two neighboring nodes. A fully multidimensional version of this scheme is obtained by taking the sum of local bounds and constraining the total flux. This new approach to algebraic flux correction provides a unified treatment of stationary and time-dependent problems. Moreover, the same algorithm is used to limit convective fluxes, anisotropic diffusion operators, and the antidiffusive part of the consistent mass matrix.The nonlinear algebraic system associated with the constrained Galerkin scheme is solved using fixed-point defect correction or a nonlinear SSOR method. A dramatic improvement of nonlinear convergence rates is achieved with the technique known as Anderson acceleration (or Anderson mixing). It blends a number of last iterates in a GMRES fashion, which results in a Broyden-like quasi-Newton update. The numerical behavior of the proposed algorithms is illustrated by a grid convergence study for convection-dominated transport problems and anisotropic diffusion equations in 2D.  相似文献   

10.
三维多面体网格上扩散方程的保正格式   总被引:1,自引:0,他引:1  
王帅  杭旭登  袁光伟 《计算数学》2015,37(3):247-263
 针对三维任意(星形)多面体网格, 本文构造了扩散方程的一种单元中心型非线性有限体积格式, 证明了该格式具有保正性. 在该格式设计中, 除引入网格中心量外, 还引入网格节点量和网格面中心量作为中间未知量, 它们将用网格中心未知量线性组合表示, 使得格式仅有网格中心未知量作为基本未知量. 在节点量计算中, 利用网格面上的调和平均点, 设计了一种适用于三维多面体网格的局部显式加权方法. 该格式适用于求解非平面的网格表面和间断扩散系数的问题. 数值例子验证了它对光滑解具有二阶精度和保正性.  相似文献   

11.
 本文在星形多边形网格上, 构造了扩散方程新的单调有限体积格式.该格式与现有的基于非线性两点流的单调格式的主要区别是, 在网格边的法向流离散模板中包含当前边上的点, 在推导离散法向流的表达式时采用了定义于当前边上的辅助未知量, 这样既可适应网格几何大变形, 同时又兼顾了当前网格边上物理量的变化. 在光滑解情形证明了离散法向流的相容性.对于具有强各向异性、非均匀张量扩散系数的扩散方程, 证明了新格式是单调的, 即格式可以保持解析解的正性. 数值结果表明在扭曲网格上, 所构造的格式是局部守恒和保正的, 对光滑解有高于一阶的精度, 并且, 针对非平衡辐射限流扩散问题, 数值结果验证了新格式在计算效率和守恒精度上优于九点格式.  相似文献   

12.
We propose a new finite volume scheme for 2D anisotropic diffusion problems on general unstructured meshes. The main feature lies in the introduction of two auxiliary unknowns on each cell edge, and then the scheme has both cell‐centered primary unknowns and cell edge‐based auxiliary unknowns. The auxiliary unknowns are interpolated by the multipoint flux approximation technique, which reduces the scheme to a completely cell‐centered one. The derivation of the scheme satisfies the linearity‐preserving criterion that requires that a discretization scheme should be exact on linear solutions. The resulting new scheme is then called as a cell edge‐based linearity‐preserving scheme. The optimal convergence rates are numerically obtained on unstructured grids in case that the diffusion tensor is taken to be anisotropic and/or discontinuous. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
We present a semi-implicit scheme for a two-dimensional multilayer shallow water system with density stratification, formulated on general staggered meshes. The main result of the present note concerns the control of the mechanical energy at the discrete level, principally based on advective fluxes implying a diffusion term expressed in terms of the gradient pressure. The scheme is also designed to capture the dynamics of low-Froude-number regimes and offers interesting positivity and well-balancing results. A numerical test is proposed to highlight the scheme's efficiency in the one-layer case.  相似文献   

14.
In this paper, we propose a positivity-preserving conservative scheme based on the virtual element method (VEM) to solve convection–diffusion problems on general meshes. As an extension of finite element methods to general polygonal elements, the VEM has many advantages such as substantial mathematical foundations, simplicity in implementation. However, it is neither positivity-preserving nor locally conservative. The purpose of this article is to develop a new scheme, which has the same accuracy as the VEM and preserves the positivity of the numerical solution and local conservation on primary grids. The first step is to calculate the cell-vertex values by the lowest-order VEM. Then, the nonlinear two-point flux approximations are utilized to obtain the nonnegativity of cell-centered values and the local conservation property. The new scheme inherits both advantages of the VEM and the nonlinear two-point flux approximations. Numerical results show that the new scheme can reach the optimal convergence order of the virtual element theory, that is, the second-order accuracy for the solution and the first-order accuracy for its gradient. Moreover, the obtained cell-centered values are nonnegative, which demonstrates the positivity-preserving property of our new scheme.  相似文献   

15.
We propose a new nonlinear positivity‐preserving finite volume scheme for anisotropic diffusion problems on general polyhedral meshes with possibly nonplanar faces. The scheme is a vertex‐centered one where the edge‐centered, face‐centered, and cell‐centered unknowns are treated as auxiliary ones that can be computed by simple second‐order and positivity‐preserving interpolation algorithms. Different from most existing positivity‐preserving schemes, the presented scheme is based on a special nonlinear two‐point flux approximation that has a fixed stencil and does not require the convex decomposition of the co‐normal. More interesting is that the flux discretization is actually performed on a fixed tetrahedral subcell of the primary cell, which makes the scheme very easy to be implemented on polyhedral meshes with star‐shaped cells. Moreover, it is suitable for polyhedral meshes with nonplanar faces, and it does not suffer the so‐called numerical heat‐barrier issue. The truncation error is analyzed rigorously, while the Picard method and its Anderson acceleration are used for the solution of the resulting nonlinear system. Numerical experiments are also provided to demonstrate the second‐order accuracy and well positivity of the numerical solution for heterogeneous and anisotropic diffusion problems on severely distorted grids.  相似文献   

16.
We propose an integrable discrete model of one‐dimensional soil water infiltration. This model is based on the continuum model by Broadbridge and White, which takes the form of nonlinear convection–diffusion equation with a nonlinear flux boundary condition at the surface. It is transformed to the Burgers equation with a time‐dependent flux term by the hodograph transformation. We construct a discrete model preserving the underlying integrability, which is formulated as the self‐adaptive moving mesh scheme. The discretization is based on linearizability of the Burgers equation to the linear diffusion equation, but the naïve discretization based on the Euler scheme which is often used in the theory of discrete integrable systems does not necessarily give a good numerical scheme. Taking desirable properties of a numerical scheme into account, we propose an alternative discrete model that produces solutions with similar accuracy to direct computation on the original nonlinear equation, but with clear benefits regarding computational cost.  相似文献   

17.
This paper deals with numerical treatments for the shallow water equations with discontinuous topography when the initial data belong to both supersonic region and subsonic region. This kind of data are present in both engineering and rivers, but they are not always well-treated in existing schemes. Our goal is to improve the well-balanced scheme constructed earlier in our work by introducing a computing corrector into the construction of the scheme. First, a further study in the construction of the well-balanced scheme reveals that the errors could make the approximate states near the critical surface that ought to be in one side of the critical surface fall into the other side. This qualitative change, though small, may cause much larger errors following stationary hydraulic jumps formed from these approximate states due to the jump of the bottom. Then, we introduce a corrector in the computing algorithm that selects the equilibrium states in the construction of the well-balanced scheme such that the approximate stationary hydraulic jumps always remain in the right region. Numerical tests show that the well-balanced method using an underlying numerical flux such as Lax–Friedrichs flux, FORCE, GFORCE, or Roe fluxes can approximate very well the exact solution even when the initial data are on both supercritical region and subcritical region.  相似文献   

18.
Modelling tracer transport (leading to a single linear advection–diffusion equation) for realistic data provides a challenging task with respect to the robustness of the underlying numerical procedures. In this paper, we contribute at this point by formulating a positive spatial advection scheme for unstructured triangular meshes. The proof of positivity is presented in detail, using an elementary classification. It is shown that with a careful reconstruction procedure and a moderate demand towards the grid a positive advection scheme is obtained. Next, a brief discussion is given on how we implement this scheme in combination with an implicit time-stepping procedure. As a numerical example, we discuss tracer transport in a strongly heterogeneous porous medium.  相似文献   

19.
In this paper,we theoretically and numerically verify that the discontinuous Galerkin(DG)methods with central fluxes for linear hyperbolic equations on non-uniform meshes have sub-optimal convergence properties when measured in the L2-norm for even degree polynomial approximations.On uniform meshes,the optimal error estimates are provided for arbitrary number of cells in one and multi-dimensions,improving previous results.The theoretical findings are found to be sharp and consistent with numerical results.  相似文献   

20.
In computer graphics and geometric modeling, shapes are often represented by triangular meshes (also called 3D meshes or manifold triangulations). The quadrangulation of a triangular mesh has wide applications. In this paper, we present a novel method of quading a closed orientable triangular mesh into a quasi-regular quadrangulation, i.e., a quadrangulation that only contains vertices of degree four or five. The quasi-regular quadrangulation produced by our method also has the property that the number of quads of the quadrangulation is the smallest among all the quasi-regular quadrangulations. In addition, by constructing the so-called orthogonal system of cycles our method is more effective to control the quality of the quadrangulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号