首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two polymorphs of (E,E)‐N,N′‐bis(4‐nitrobenzylidene)benzene‐1,4‐diamine, C20H14N4O4, (I), have been identified. In each case, the molecule lies across a crystallographic inversion centre. The supramolecular structure of the first polymorph, (I‐1), features stacking based on π–π interactions assisted by weak hydrogen bonds involving the nitro groups. The second polymorph, (I‐2), displays a perpendicular arrangement of molecules linked via the nitro groups, combined with weak C—H...O hydrogen bonds. Both crystal structures are compared with that of the carbon analogue (E,E)‐1,4‐bis[2‐(4‐nitrophenyl)ethenyl]benzene, (II).  相似文献   

2.
3,5‐Bis(arylidene)‐4‐piperidone (BAP) derivatives display good antitumour and anti‐inflammatory activities because of their double α,β‐unsaturated ketone structural characteristics. If N‐benzenesulfonyl substituents are introduced into BAPs, the configuration of the BAPs would change significantly and their anti‐inflammatory activities should improve. Four N‐benzenesulfonyl BAPs, namely (3E,5E)‐1‐(4‐methylbenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one dichloromethane monosolvate, C28H21F6NO3S·CH2Cl2, ( 4 ), (3E,5E)‐1‐(4‐fluorobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one, C27H18F7NO3S, ( 5 ), (3E,5E)‐1‐(4‐nitrobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one, C27H18F6N2O5S, ( 6 ), and (3E,5E)‐1‐(4‐cyanobenzenesulfonyl)‐3,5‐bis[4‐(trifluoromethyl)benzylidene]piperidin‐4‐one dichloromethane monosolvate, C28H18F6N2O3S·CH2Cl2, ( 7 ), were prepared by Claisen–Schmidt condensation and N‐sulfonylation. They were characterized by NMR, FT–IR and HRMS (high resolution mass spectrometry). Single‐crystal structure analysis reveals that the two 4‐(trifluoromethyl)phenyl rings on both sides of the piperidone ring in ( 4 )–( 7 ) adopt an E stereochemistry of the olefinic double bonds. Molecules of both ( 4 ) and ( 6 ) are connected by hydrogen bonds into one‐dimensional chains. In ( 5 ) and ( 7 ), pairs of adjacent molecules embrace through intermolecular hydrogen bonds to form a bimolecular combination, which are further extended into a two‐dimensional sheet. The anti‐inflammatory activity data reveal that ( 4 )–( 7 ) significantly inhibit LPS‐induced interleukin (IL‐6) and tumour necrosis factor (TNF‐α) secretion. Most importantly, ( 6 ) and ( 7 ), with strong electron‐withdrawing substituents, display more potential inhibitory effects than ( 4 ) and ( 5 ).  相似文献   

3.
The stilbene derivative 1,2,3‐trimethoxy‐4‐[(E)‐2‐phenylvinyl]benzene, C17H18O3, (I), and its homocoupling co‐product (E,E)‐1,4‐bis(2,3,4‐trimethoxyphenyl)buta‐1,3‐diene, C22H26O6, (II), both have double bonds in trans conformations in their conjugated linkages. In the structure of stilbene (I), the aromatic rings deviate significantly from coplanarity, in contrast with coproduct (II), the core of which is rigorously planar. The deviation in stilbene (I) seems to be driven by intermolecular electrostatic interactions. Diene (II) sits on a crystallographic inversion centre, which bisects the conjugated linkage.  相似文献   

4.
Two polymorphs of bis(2‐carbamoylguanidinium) fluorophosphonate dihydrate, 2C2H7N4O+·FO3P2−·2H2O, are presented. Polymorph (I), crystallizing in the space group Pnma, is slightly less densely packed than polymorph (II), which crystallizes in Pbca. In (I), the fluorophosphonate anion is situated on a crystallographic mirror plane and the O atom of the water molecule is disordered over two positions, in contrast with its H atoms. The hydrogen‐bond patterns in both polymorphs share similar features. There are O—H...O and N—H...O hydrogen bonds in both structures. The water molecules donate their H atoms to the O atoms of the fluorophosphonates exclusively. The water molecules and the fluorophosphonates participate in the formation of R44(10) graph‐set motifs. These motifs extend along the a axis in each structure. The water molecules are also acceptors of either one [in (I) and (II)] or two [in (II)] N—H...O hydrogen bonds. The water molecules are significant building elements in the formation of a three‐dimensional hydrogen‐bond network in both structures. Despite these similarities, there are substantial differences between the hydrogen‐bond networks of (I) and (II). The N—H...O and O—H...O hydrogen bonds in (I) are stronger and weaker, respectively, than those in (II). Moreover, in (I), the shortest N—H...O hydrogen bonds are shorter than the shortest O—H...O hydrogen bonds, which is an unusual feature. The properties of the hydrogen‐bond network in (II) can be related to an unusually long P—O bond length for an unhydrogenated fluorophosphonate anion that is present in this structure. In both structures, the N—H...F interactions are far weaker than the N—H...O hydrogen bonds. It follows from the structure analysis that (II) seems to be thermodynamically more stable than (I).  相似文献   

5.
The title compounds, 3,5,7‐triphenyl‐1,2‐diazacyclohepta‐1(7),2‐diene, C23H20N2, (I), and 3,7‐bis(2‐hydroxyphenyl)‐5‐phenyl‐1,2‐diazacyclohepta‐1(7),2‐diene, C23H20N2O2, (II), constitute the first structurally characterized examples of seven‐membered heterocycles with 1,2‐diaza ring N atoms. Compound (I) crystallizes in the space group P, with two independent molecules in the asymmetric unit that differ in the conformation of one of the phenyl rings, while (II) crystallizes in the space group C2/c. The C5N2 ring in each of (I) and (II) adopts a twist‐boat conformation. Compound (I) exhibits neither C—H...π interactions nor π–π stacking interactions, whereas (II) shows both intramolecular O—H...N hydrogen bonds and a C—H...π interaction that joins the molecules into an infinite chain in the [010] direction.  相似文献   

6.
Alkanolamines have been known for their high CO2 absorption for over 60 years and are used widely in the natural gas industry for reversible CO2 capture. In an attempt to crystallize a salt of (RS)‐2‐(3‐benzoylphenyl)propionic acid with 2‐amino‐2‐methylpropan‐1‐ol, we obtained instead a polymorph (denoted polymorph II) of bis(1‐hydroxy‐2‐methylpropan‐2‐aminium) carbonate, 2C4H12NO+·CO32−, (I), suggesting that the amine group of the former compound captured CO2 from the atmosphere forming the aminium carbonate salt. This new polymorph was characterized by single‐crystal X‐ray diffraction analysis at low temperature (100 K). The salt crystallizes in the monoclinic system (space group C2/c, Z = 4), while a previously reported form of the same salt (denoted polymorph I) crystallizes in the triclinic system (space group P, Z = 2) [Barzagli et al. (2012). ChemSusChem, 5 , 1724–1731]. The asymmetric unit of polymorph II contains one 1‐hydroxy‐2‐methylpropan‐2‐aminium cation and half a carbonate anion, located on a twofold axis, while the asymmetric unit of polymorph I contains two cations and one anion. These polymorphs exhibit similar structural features in their three‐dimensional packing. Indeed, similar layers of an alternating cation–anion–cation neutral structure are observed in their molecular arrangements. Within each layer, carbonate anions and 1‐hydroxy‐2‐methylpropan‐2‐aminium cations form planes bound to each other through N—H…O and O—H…O hydrogen bonds. In both polymorphs, the layers are linked to each other via van der Waals interactions and C—H…O contacts. In polymorph II, a highly directional C—H…O contact (C—H…O = 156°) shows as a hydrogen‐bonding interaction. Periodic theoretical density functional theory (DFT) calculations indicate that both polymorphs present very similar stabilities.  相似文献   

7.
The wide diversity of applications of thiosemicarbazones and bis(thiosemicarbazones) has seen them used as anticancer and antitubercular agents, and as ligands in metal complexes designed to act as site‐specific radiopharmaceuticals. Molecules of 1,1′‐({[(ethane‐1,2‐diyl)dioxy](1,2‐phenylene)}bis(methanylylidene))bis(thiosemicarbazide) {alternative name: 2,2′‐[ethane‐1,2‐diylbis(oxy)]dibenzaldehyde bis(thiosemicarbazide)}, C18H20N6O2S2, (I), lie across twofold rotation axes in the space group C2/c, with an O—C—C—O torsion angle of −59.62 (13)° and a trans‐planar arrangement of the thiosemicarbazide fragments relative to the adjacent aryl rings. The molecules of (I) are linked by N—H...S hydrogen bonds to form sheets containing R24(38) rings and two types of R22(8) ring. In the N,N‐dimethylformamide disolvate, C18H20N6O2S2·2C3H7NO, (II), the independent molecular components all lie in general positions, but one of the solvent molecules is disordered over two sets of atomic sites having occupancies of 0.839 (3) and 0.161 (3). The O—C—C—O torsion angle in the ArOCH2CH2OAr component is −75.91 (14)° and the independent thiosemicarbazide fragments both adopt a cis‐planar arrangement relative to the adjacent aryl rings. The ArOCH2CH2OAr components in (II) are linked by N—H...S hydrogen bonds to form deeply puckered sheets containing R22(8), R24(8) and two types of R22(38) rings, and which contain cavities which accommodate all of the solvent molecules in the interior of the sheets. Comparisons are made with some related compounds.  相似文献   

8.
The formation of a photoreactive cocrystal based upon 1,2‐diiodoperchlorobenzene ( 1,2‐C6I2Cl4 ) and trans‐1,2‐bis(pyridin‐4‐yl)ethylene ( BPE ) has been achieved. The resulting cocrystal, 2( 1,2‐C6I2Cl4 )·( BPE ) or C6Cl4I2·0.5C12H10N2, comprises planar sheets of the components held together by the combination of I…N halogen bonds and halogen–halogen contacts. Notably, the 1,2‐C6I2Cl4 molecules π‐stack in a homogeneous and face‐to‐face orientation that results in an infinite column of the halogen‐bond donor. As a consequence of this stacking arrangement and I…N halogen bonds, molecules of BPE also stack in this type of pattern. In particular, neighbouring ethylene groups in BPE are found to be parallel and within the accepted distance for a photoreaction. Upon exposure to ultraviolet light, the cocrystal undergoes a solid‐state [2 + 2] cycloaddition reaction that produces rctt‐tetrakis(pyridin‐4‐yl)cyclobutane ( TPCB ) with an overall yield of 89%. A solvent‐free approach utilizing dry vortex grinding of the components also resulted in a photoreactive material with a similar yield.  相似文献   

9.
Single crystals of a triclinic polymorphic form of mer‐μ‐oxalato‐bis[chloridotripyridinecobalt(II)] pyridine disolvate, [Co2(C2O4)Cl2(C5H5N)6]·2C5H5N, have been prepared by solvothermal methods. The structure and geometric parameters strongly resemble those of the previously reported monoclinic polymorph [Bolte (2006). Acta Cryst. E 62 , m597–m598]. In both polymorphic forms, the dinuclear complex molecules are located on a crystallographic centre of inversion, with the CoII cations in a distorted octahedral environment consisting of a chloride ligand, three pyridine ligands and a chelating bis‐bidentate oxalate ligand. This last serves as a bridging ligand between two CoII cations. The polymorphs differ in the mutual orientation of their pyridine ligands in the dinuclear molecules and in their intermolecular connectivity. In the triclinic polymorph, C—H...O, C—H...Cl, C—H...π and π–π interactions link the dinuclear molecules into a three‐dimensional structure. Pyridine solvent molecules are attached to this structure via weak interactions.  相似文献   

10.
The structures of orthorhombic (E)‐4‐(2‐{[amino(iminio)methyl]amino}vinyl)‐3,5‐dichlorophenolate dihydrate, C8H8Cl2N4O·2H2O, (I), triclinic (E)‐4‐(2‐{[amino(iminio)methyl]amino}vinyl)‐3,5‐dichlorophenolate methanol disolvate, C8H8Cl2N4O·2CH4O, (II), and orthorhombic (E)‐amino[(2,6‐dichloro‐4‐hydroxystyryl)amino]methaniminium acetate, C8H9Cl2N4O+·C2H3O2, (III), all crystallize with one formula unit in the asymmetric unit, with the molecule in an E configuration and the phenol H atom transferred to the guanidine N atom. Although the molecules of the title compounds form extended chains via hydrogen bonding in all three forms, owing to the presence of different solvent molecules, those chains are connected differently in the individual forms. In (II), the molecules are all coplanar, while in (I) and (III), adjacent molecules are tilted relative to one another to varying degrees. Also, because of the variation in hydrogen‐bond‐formation ability of the solvents, the hydrogen‐bonding arrangements vary in the three forms.  相似文献   

11.
The title compound, [Co2(C12H11N2)2(C12H10N2)(H2O)8][Co(H2O)6](SO4)4·8H2O, consists of bis(4‐pyridyl)ethenedicobalt(II) cations, hexaaqua­cobalt cations, sulfate anions and water solvent molecules that are linked by hydrogen bonds into a network structure. In the hexaaquacobalt cation, the six water molecules are coordinated in an octahedral geometry to the Co atom, which lies on an inversion centre. The other cation is a 1,2‐bis(4‐pyridyl)ethene‐bridged centrosymmetric dimer, consisting of protonated 1,2‐bis(4‐pyridyl)­ethene cations, a bridging 1,2‐bis(4‐pyridyl)ethene ligand and tetraaqua­cobalt cations. Each Co atom is six‐coordinated by four water molecules and two N atoms from a protonated 1,2‐bis(4‐pyridyl)ethene cation and the bridging 1,2‐bis(4‐pyridyl)­ethene ligand, and the geometry around each Co atom is octahedral.  相似文献   

12.
Three photoluminescent complexes containing either ZnII or CdII have been synthesized and their structures determined. Bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)zinc(II), [Zn(C12H10N6)2(C2N3)2], (I), bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(dicyanamido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C2N3)2], (II), and bis[4‐amino‐3,5‐bis(pyridin‐2‐yl)‐1,2,4‐triazole‐κ2N 1,N 5]bis(tricyanomethanido‐κN 1)cadmium(II), [Cd(C12H10N6)2(C4N3)2], (III), all crystallize in the space group P , with the metal centres lying on centres of inversion, but neither analogues (I) and (II) nor CdII complexes (II) and (III) are isomorphous. A combination of N—H…N and C—H…N hydrogen bonds and π–π stacking interactions generates three‐dimensional framework structures in (I) and (II), and a sheet structure in (III). The photoluminescence spectra of (I)–(III) indicate that the energies of the π–π* transitions in the coordinated triazole ligand are modified by minor changes of the ligand geometry associated with coordination to the metal centres.  相似文献   

13.
The crystal structures of 4,5‐bis(bromomethyl)‐1,3‐dithiol‐2‐one, C5H4Br2OS2, (I), and 4,5‐bis[(dihydroxyphosphoryl)methyl]‐1,3‐dithiol‐2‐one, C5H8O7P2S2, (II), occur with similar unit cells in the same monoclinic space group. Both molecules reside on a twofold symmetry axis coincident with the C=O bond, so that the substituents in the 4‐ and 5‐positions project above and below the plane of the 1,3‐dithiol‐2‐one ring. In both structures, the molecules align themselves in a head‐to‐tail fashion along the b axis, and these rows of molecules then stack, with alternating directionality, along the c axis. For (II), an extensive network of intermolecular hydrogen bonds occurs between molecules within the same stack and between adjacent stacks. Each –CH2P(O)(OH)2 group participates in four hydrogen bonds, twice as donor and twice as acceptor.  相似文献   

14.
Two structural isomers, 3,6‐bis(2‐chloro­phenyl)‐1,4‐di­hydro‐1,2,4,5‐tetrazine, (I), and 3,5‐bis(2‐chloro­phenyl)‐4‐amino‐1H‐1,2,4‐triazole, (II), both C14H10Cl2N4, form chain‐like structures in the solid state, stabilized by N—H⋯N and N—H⋯Cl hydrogen bonds. A contribution from weak interactions to the strong hydrogen‐bond network is observed in both structures. The secondary graph sets for intermolecular hydrogen bonds [(11) for (I) and (12) for (II)] indicate the similarity between the networks.  相似文献   

15.
We obtained two conformational polymorphs of 2,5‐dichloro‐3,6‐bis(dibenzylamino)‐p‐hydroquinone, C34H30Cl2N2O2. Both polymorphs have an inversion centre at the centre of the hydroquinone ring (Z′ = ), and there are no significant differences between their bond lengths and angles. The most significant structural difference in the molecular conformations was found in the rotation of the phenyl rings of the two crystallographically independent benzyl groups. The crystal structures of the polymorphs were distinguishable with respect to the arrangement of the hydroquinone rings and the packing motif of the phenyl rings that form part of the benzyl groups. The phenyl groups of one polymorph are arranged in a face‐to‐edge motif between adjacent molecules, with intermolecular C—H…π interactions, whereas the phenyl rings in the other polymorph form a lamellar stacking pattern with no significant intermolecular interactions. We suggest that this partial conformational difference in the molecular structures leads to the significant structural differences observed in their molecular arrangements.  相似文献   

16.
2‐Bromo‐1,3‐bis[2‐(2‐naphthyl)vinyl]benzene benzene hemisolvate, C30H21Br·0.5C6H6, (I), with two formula units in the asymmetric unit, exists in the crystal structure in a conformation in which the trans (2‐naphthyl)vinyl substituents on the central bromobenzene moiety appear as nearly fully extended `wings', while 9‐bromodinaphth[1,2‐a:2′,1′‐j]anthracene, C30H17Br, (II), adopts a highly nonplanar `manta‐ray' shape, with the H atoms in the interior of the molecule within van der Waals contact distances. The packing of the significantly twisted molecules of (I) generates large voids which are filled by benzene solvent molecules, while molecules of (II) stack compactly with all C—Br bonds parallel within the stack.  相似文献   

17.
The complex trans‐bis(hinokitiolato)copper(II) [systematic name: trans‐bis(3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trienolato)copper(II); abbreviated name: trans‐Cu(hino)2], [Cu(C10H11O2)2], is a biologically active compound. Three polymorphs of this square‐planar monomer, all with (+sp,−sp) isopropyl substituents, have been reported previously. A fourth polymorph containing (+ac,−ac) isopropyl groups and its chloroform disolvate, [Cu(C10H11O2)2]·2CHCl3, both exhibiting nonmerohedral twinning and with all Cu atoms on centers of crystallographic inversion symmetry, are reported here. One of the differences between all of these polymorphs is the relative conformation of the isopropyl groups with respect to the plane of the molecule. Stacking and Cu...olefin π distances ranging from 3.214 (4) to 3.311 (2) Å are observed, and the chloroform solvent molecules participate in bifurcated C—H...O hydrogen bonds [H...O = 2.26–2.40 Å, C...O = 3.123 (5)–3.214 (5) Å, C—H...O = 127–151° and O...H...O = 74°].  相似文献   

18.
A new polymorph (denoted polymorph II) of 3‐acetyl‐4‐hydroxy‐2H‐chromen‐2‐one, C11H8O4, was obtained unexpectedly during an attempt to recrystallize the compound from salt–melted ice, and the structure is compared with that of the original polymorph (denoted polymorph I) [Lyssenko & Antipin (2001). Russ. Chem. Bull. 50 , 418–431]. Strong intramolecular O—H...O hydrogen bonds are observed equally in the two polymorphs [O...O = 2.4263 (13) Å in polymorph II and 2.442 (1) Å in polymorph I], with a slight delocalization of the hydroxy H atom towards the ketonic O atom in polymorph II [H...O = 1.32 (2) Å in polymorph II and 1.45 (3) Å in polymorph I]. In both crystal structures, the packing of the molecules is dominated and stabilized by weak intermolecular C—H...O hydrogen bonds. Additional π–π stacking interactions between the keto–enol hydrogen‐bonded rings stabilize polymorph I [the centres are separated by 3.28 (1) Å], while polymorph II is stabilized by interactions between α‐pyrone rings, which are parallel to one another and separated by 3.670 (5) Å.  相似文献   

19.
1,1′‐[(Ethane‐1,2‐diyldioxy)di‐o‐phenylene]bis(indoline‐2,3‐dione), C32H24N2O6, L or (I), adopts a trans conformation with the two terminal indoline‐2,3‐dione groups located on opposite sides of the central ether bridge, as required by a centre of inversion located at the mid‐point of the ethane C—C bond. However, in the discrete binuclear AgI metallocycle complex salt bis{μ‐1,1′‐[(ethane‐1,2‐diyldioxy)di‐o‐phenylene]bis(indoline‐2,3‐dione)}disilver(I) bis(hexafluoridoantimonate), [Ag2(C32H24N2O6)2][SbF6]2, (II), synthesized by combination of L with AgSbF6, L adopts a gauche conformation to bind AgIvia the two indolinedione O atoms and two C atoms from the phenoxy ring. One dione O atom from the opposite side of the ether bridge completes the irregular coordination environment of each AgI atom. The complex is on a centre of inversion located between the AgI atoms. In the solid state, these binuclear [Ag2L2]2+ metallocycles stack together via intermolecular π–π interactions to generate a one‐dimensional chain motif, with the [SbF6] counter‐ions, which are disordered, located between the chains.  相似文献   

20.
3,5‐Bis(arylidene)piperidin‐4‐one derivatives (BAPs) display good antitumour activity because of their double α,β‐unsaturated ketone structural characteristics. Reported BAPs have generally been symmetric and asymmetric BAPs have been little documented. Three asymmetric BAPs, namely (5E)‐3‐(4‐tert‐butylbenzylidene)‐5‐(4‐fluorobenzylidene)‐1‐methylpiperidin‐4‐one, C24H26FNO, ( 5 ), (5E)‐3‐(4‐tert‐butylbenzylidene)‐5‐(3,5‐dimethoxybenzylidene)‐1‐methylpiperidin‐4‐one, C26H31NO3, ( 6 ), and (5E)‐3‐{3‐[(E)‐(2,3‐dihydroxybenzylidene)amino]benzylidene}‐5‐(2‐fluorobenzylidene)‐1‐methylpiperidin‐4‐one, C27H23FN2O3, ( 12 ), were generated by Claisen–Schmidt condensation. They are characterized by NMR and FT–IR spectroscopies, and elemental analysis. Single‐crystal structure analysis reveals that the two arylidene rings on both sides of the BAP structures adopt an E stereochemistry of the olefinic double bonds and the compounds are E,E isomers. Molecules of ( 5 ) and ( 12 ) generate one‐dimensional chains through intermolecular hydrogen bonds, while compound ( 6 ) generates a two‐dimensional network through hydrogen bonds. Preliminary cytotoxicities toward human liver hepatocellular carcinoma cell line (HepG2), human acute mononuclear granulocyte leukaemia (THP‐1) and human normal hepatical cell line (LO2) were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号