首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Quantitative magnetic resonance imaging (MRI) studies of small samples such as a single cell or cell clusters require application of radiofrequency (RF) coils that provide homogenous B1 field distribution and high signal-to-noise ratio (SNR).We present a novel design of an MRI RF volume microcoil based on a microstrip structure. The coil consists of two parallel microstrip elements conducting RF currents in the opposite directions, thus creating homogenous RF field within the space between the microstrips. The construction of the microcoil is simple, efficient and cost-effective.Theoretical calculations and finite element method simulations were used to optimize the coil geometry to achieve optimal B1 and SNR distributions within the sample and predict parameters of the coil. The theoretical calculations were confirmed with MR images of a 1-mm-diameter capillary and a plant obtained with the double microstrip RF microcoil at 11.7 T. The in-plane resolution of MR images was 24 μm×24 μm.  相似文献   

2.
Unilateral magnetic resonance techniques, where magnet and radio frequency (RF) coil are placed on one side of the sample, can provide valuable information about a sample which otherwise cannot be accommodated in conventional high spectral resolution magnetic resonance systems. A unilateral magnetic resonance imaging approach utilizing the stray field from a disc magnet and a butterfly geometry RF coil is described. The coil excites spins in a volume centered around an arc through the sample. Translating the RF coil relative to the magnet and recording the signal at each translational location creates a projection of the signal in a tomographic slice through the sample. Rotating the RF coil relative to the sample and repeating the translation creates projections through the sample at different angles. Backprojecting this information yields an image. A proof of concept device operating on this principle at 12.4 MHz was constructed and characterized. Projections through three phantoms are presented with a 1.2-4 cm field of view, thickness of 102 microm, and at a distance of 3mm from the RF coil and 14 mm from the magnet. The edge spread function (ESF) was measured resulting in a 4mm full width at half maximum (FWHM) line spread function (LSF) estimation using a Gaussian model. An example of one reconstructed image is presented.  相似文献   

3.
A novel coil, called Z coil, is presented. Its function is to reduce the strong thermal effects produced by rf heating at high frequencies. The results obtained at 500MHz in a 50 microl sample prove that the Z coil can cope with salt concentrations that are one order of magnitude higher than in traditional solenoidal coils. The evaluation of the rf field is performed by numerical analysis based on first principles and by carrying out rf field measurements. Reduction of rf heating is probed with a DMPC/DHPC membrane prepared in buffers of increasing salt concentrations. The intricate correlation that exists between the magnetic and electric field is presented. It is demonstrated that, in a multiply tuned traditional MAS coil, the rf electric field E(1) cannot be reduced without altering the rf magnetic field. Since the detailed distribution differs when changing the coil geometry, a comparison involving the following three distinct designs is discussed: (1) a regular coil of 5.5 turns, (2) a variable pitch coil with the same number of turns, (3) the new Z coil structure. For each of these coils loaded with samples of different salt concentrations, the nutation fields obtained at a certain power level provide a basis to discuss the impact of the dielectric and conductive losses on the rf efficiency.  相似文献   

4.
The monopole coil and loop coil have orthogonal radiofrequency (RF) fields and thus are intrinsically decoupled electromagnetically if they are laid out appropriately. In this study, we proposed a hybrid monopole/loop technique which could combine the advantages of both loop arrays and monopole arrays. To investigate this technique, a hybrid RF coil array containing four monopole channels and four loop channels was developed for human head magnetic resonance (MR) imaging at 7 T. In vivo MR imaging and g-factor results using monopole-only channels, loop-only channels and all channels of the hybrid array were acquired and evaluated. Compared with the monopole-only and loop-only channels, the proposed hybrid array has the higher signal-to-noise ratio (SNR) and better parallel imaging performance. Sufficient electromagnetic decoupling and diverse RF magnetic field (B1) distributions of monopole channels and loop channels may contribute to this performance improvement. From experimental results, the hybrid monopole/loop array has low g-factor and excellent SNR at both periphery and center of the brain, which is valuable for human head imaging at ultrahigh fields.  相似文献   

5.
Deterioration of radiofrequency (RF) inhomogeneity with increasing static magnetic field in magnetic resonance imaging (MRI) is one of the fundamental challenges preventing their clinical rendition and posing safety hazards. Variation in RF coil designs could help redistribute RF energy absorption over the imaged object. This work is intended to determine experimentally the difference in RF heating produced within a human head phantom by in situ measurement of RF inhomogeneity as a function of coil design utilized at 8 T. The heating patterns of 1/4 wavelength (long) and 1/8 wavelength 11-cm (short) transverse electromagnetic (TEM) coils loaded with a homogeneous human head phantom at 340 MHz were evaluated. In addition, different transmit/receive (T/R) configurations were used in search for the possibility of "hot-spot" formation. Fluoroptic thermometry was used to measure temperatures in multiple positions in a head phantom made of ground turkey breast for RF powers corresponding to a specific absorption rate (SAR) of 4.0 W/kg for 10 min. Numerical simulations were performed to study the general RF power deposition patterns in phantoms at 340 MHz including the effects of field polarization. The temperature increases varied from 0 to 0.8 degrees C for the long RF coil, while the short RF coil produced a maximum temperature change of 0.5 degrees C. Similar to ultra high-field electromagnetic simulations, these measurements revealed low peripheral and high deep-tissue heating at 8 T. The findings indicated that the largest temperature changes for both cases were less than 1 degrees C. While these results showed an increase in localized heating due to RF pulses at 8 T, they highlight that RF inhomogeneity could be redistributed using different RF coil designs through which the hot spots could be made cooler.  相似文献   

6.
We introduce the concept of amplifying the transverse magnetic fields produced and/or detected with inductive coils in magnetic resonance settings by using the reversible transverse susceptibility properties of magnetic nanostructures. First, we describe the theoretical formalism of magnetic flux amplification through the coil in the presence of a large perpendicular DC magnetic field (typical of magnetic resonance systems) achieved through the singularity in the reversible transverse susceptibility in anisotropic single domain magnetic nanoparticles. We experimentally demonstrate the concept of transverse magnetic flux amplification in an inductive coil system using oriented nanoparticles with uni-axial magnetic anisotropy. We also propose a composite ferromagnetic/anti-ferromagnetic core/shell nanostructure system with uni-directional magnetic anisotropy that, in principle, provides maximal transverse magnetic flux amplification.  相似文献   

7.
Heating due to high power 1H decoupling limits the experimental lifetime of protein samples for solid-state NMR (SSNMR). Sample deterioration can be minimized by lowering the experimental salt concentration, temperature or decoupling fields; however, these approaches may compromise biological relevance and/or spectroscopic resolution and sensitivity. The desire to apply sophisticated multiple pulse experiments to proteins therefore motivates the development of probes that utilize the RF power more efficiently to generate a high ratio of magnetic to electric field in the sample. Here a novel scroll coil resonator structure is presented and compared to a traditional solenoid. The scroll coil is demonstrated to be more tolerant of high sample salt concentrations and cause less RF-induced sample heating. With it, the viable experimental lifetime of a microcrystalline ubiquitin sample has been extended by more than an order of magnitude. The higher B1 homogeneity and permissible decoupling fields enhance polarization transfer efficiency in 15N-13C correlation experiments employed for protein chemical shift assignments and structure determination.  相似文献   

8.
An analytic solution of the Maxwell equations for aqueous flat cells in rectangular TE(102) cavities has led to the prediction of significant (3-6 times) X-band EPR signal improvement over the standard flat cell for a new sample configuration consisting of many flat cells oriented perpendicular to the electric field nodal plane. Analytic full wave solutions in the presence of sample and wall losses have been obtained and numerically evaluated. Observation of the predicted fields led to a classification of three distinct types of sample loss mechanisms, which, in turn inspired sample designs that minimize each loss type. The resulting EPR signal enhancement is due to the presence and centering of a tangential electric field node within each individual sample region. Samples that saturate with the available RF magnetic field and those that do not are considered. Signal enhancement appears in both types. These observations, done for the TE(102) mode, carry over to the uniform field (UF) modes, a relatively new class of microwave cavities for use in EPR spectroscopy developed in this laboratory. Rectangular UF modes have an RF magnetic field magnitude that is uniform in a plane. Based on this analysis, a practical multiple flat-cell design is proposed.  相似文献   

9.
Applications of low-field magnetic resonance imaging (MRI) systems (<0.3 T) are limited due to the signal-to-noise ratio (SNR) being lower than that provided by systems based on superconductive magnets (≥1.5 T). Therefore, the design of radiofrequency (RF) coils for low-field MRI requires careful consideration as significant gains in SNR can be achieved with the proper design of the RF coil. This article describes an analytical method for the optimization of solenoidal coils. Coil and sample losses are analyzed to provide maximum SNR and optimum B1 field homogeneity. The calculations are performed for solenoidal coils optimized for the human head at 0.2 T, but the method could also be applied to any solenoidal coil for imaging other anatomical regions at low field. Several coils were constructed to compare experimental and theoretical results. A head magnetic resonance image obtained at 0.2 T with the optimum design is presented.  相似文献   

10.
Four different coil designs for use with MAS in triple-resonance multi-nuclear experiments at high fields are compared, using a combination of finite element analysis (FEA) software and NMR experiments, with respect to RF field strength per unit power and relative sample heating, as governed by mean E/B(1) within the sample region. A commercial FEA package, Microwave Studio 5.1 by Computer Simulation Technology (CST) is shown to obtain remarkably accurate agreement with the experiments in Q(L), L, B, E, and mode frequencies in all cases. A simplified treatment of RF heating in NMR MAS samples is derived and shown to agree with the NMR experimental results within about 10% for two representative stator designs. The coil types studied include: (1) a variable-pitch solenoid outside a ceramic coilform, (2) a conventional solenoid very closely spaced to the MAS rotor, (3) a scroll coil, and (4) a segmented saddle cross coil (XC) for (1)H with an additional solenoid over it for the two lower-frequency channels. The XC/solenoid is shown to offer substantial advantages in reduced decoupler heating, improved S/N, and improved compatibility with multinuclear tuning and high-power decoupling. This seems largely because the division of labor between two orthogonal coils allows them each, and their associated circuitry, to be separately optimized for their respective regimes.  相似文献   

11.
A new target-field approach to generating uniform radio frequency (RF) fields within the human body for high field MRI is described. The method involves producing a set of external fields which, after interaction with a dielectric object, superimpose to produce a traveling plane wave, exposing all spins to the same RF amplitude (B1) over a cycle of the harmonic field. Conceptually this is similar to conventional RF shimming, but uses a different RF source design, input data, and objective function. The method requires a detailed knowledge of the coupling between exterior field modes, produced by an array of RF sources, and field modes within the body. Given an estimate of the coupling matrix, the linear superposition of external modes that produces a desired internal target field can be determined. The new method is termed Traveling Internal Plane-wave Synthesis (TIPS). A simple design of a coil array is described that can, in principle, generate the required field modes. Simulations demonstrate that radio frequency magnetic fields of nearly uniform (< 1% variation) magnitude can be produced within dielectric objects larger than a wavelength in size. If the dielectric medium has non-zero conductivity, traveling waves are attenuated as they traverse the object, but field uniformity within planar slices is preserved. For general 3D imaging, a superposition of plane waves can provide field focusing to balance conductive losses, thereby achieving nearly uniform-magnitude B1+ magnetic fields over a volume of interest.  相似文献   

12.
At high magnetic fields radiation losses, wavelength effects, self-resonance, and the high resistance of typical components all contribute to increased losses in conventional RF coil designs. High permittivity ceramic dielectric resonators create strong uniform magnetic fields in a compact structure at high frequencies and can potentially solve some of the challenges of high field coil design. In this study an NMR probe was constructed for operation at 600 MHz (14.1 T) using an inductively fed CaTiO3 (relative permittivity of 156) cylindrical hollow bore dielectric resonator. The design has an unmatched Q value greater than 2000, and the electric field is largely confined to the dielectric itself, with near zero values in the hollow bore which accommodates the sample. Experimental and simulation mapping of the RF field show good agreement, with the ceramic resonator giving a pulse width approximately 25% less than a loop gap resonator of similar inner dimensions. High resolution images, with voxel dimensions less than 50 μm3, have been acquired from fixed zebrafish samples, showing excellent delineation of several fine structures.  相似文献   

13.
B(1) Field inhomogeneity and the relative effects of dielectric resonances are analyzed within the context of ultra high field MRI. This is accomplished by calculating the electromagnetic fields inside spherical phantoms and within a human head model in the presence and absence of an RF coil. These calculations are then compared to gradient echo and RARE images, respectively. For the spherical phantoms, plane incident wave analyses are initially presented followed by full wave finite difference time domain (FDTD) calculations. The FDTD methods are then utilized to examine the electromagnetic interactions between the TEM resonator and an anatomically detailed human head model. The results at 340 MHz reveal that dielectric resonances are most strongly excited in objects similar in size to the human head when the conducting medium has a high dielectric constant and a low conductivity. It is concluded that in clinical UFHMRI, the most important determinants of B(1) field homogeneity consist of 1) the RF coil design, 2) the interaction between the RF coil, the excitation source and the sample, and finally 3) the geometry and electrical properties of the sample.  相似文献   

14.
A complete RF coil system, as has been previously defined, is capable of generating any steady-state RF field, at the MR frequency, that is compatible with Maxwell's equations. A coil system is complete if it is capable of generating all basis vector fields in the multipole expansion of the electromagnetic fields. A complete coil system has the potential to reach the ultimate intrinsic signal-to-noise as an MRI receiver coil. It also offers maximum flexibility in tailoring the spatial RF field distribution as an excitation coil. Here, computer simulations have been performed on array coils employing composite coil elements, assuming the current loops are small and can be approximated by magnetic dipoles. We demonstrate that a coil array can be configured to approximate a truncated complete array coil and to generate the basis magnetic vector fields up to certain orders in the multipole expansion of the electromagnetic fields.  相似文献   

15.
孟斌  黄开文  王为民 《中国物理 B》2010,19(7):76103-076103
In this article,a novel designed radio frequency (RF) coil is designed and built for the imaging of puppies in a V-shape permanent magnetic resonance imaging (MRI) system.Two sets of Helmholtz coil pairs with a V-shape structure are used to improve the holding of an animal in the coil.The homogeneity and the sensitivity of the RF field in the coil are analysed by theoretical calculation.The size and the shape of the new coil are optimized and validated by simulation through using the finite element method (FEM).Good magnetic resonance (MR) images are achieved on a shepherd dog.  相似文献   

16.
The plasma density is shown as functions of pressure and magnetic flux density in an RF resonance method using the XPDP1 simulation code. The RF resonance method has the unique feature that a strong electric field in bulk controls the plasma density. Owing to the balance between the electric field decrease and the collision rate increase, the plasma density in the RF resonance method has a peak with respect to pressure. The plasma density with respect to the magnetic flux density depends on the condition of the RF resonance method, and the dependence is strong at low pressure because of the strong resonance. Sheath thickness is the most important parameter that determines the strength of the resonance induced. It is shown that the sheath thickness s is related to the plasma density n as a function of ns, obtained from a dispersion relation at constant external parameters. The magnetic flux density which induces the strong resonance is determined from sheath thickness. The plasma density in the RF resonance method can be predicted from discharge parameters using the relation between plasma density and sheath thickness  相似文献   

17.
RF heating of solid-state biological samples is known to be a destabilizing factor in high-field NMR experiments that shortens the sample lifetime by continuous dehydration during the high-power cross-polarization and decoupling pulses. In this work, we describe specially designed, large volume, low-E 15N-1H solid-state NMR probes developed for 600 and 900 MHz PISEMA studies of dilute membrane proteins oriented in hydrated and dielectrically lossy lipid bilayers. The probes use an orthogonal coil design in which separate resonators pursue their own aims at the respective frequencies, resulting in a simplified and more efficient matching network. Sample heating at the 1H frequency is minimized by a loop-gap resonator which produces a homogeneous magnetic field B1 with low electric field E. Within the loop-gap resonator, a multi-turn solenoid closely matching the shape of the sample serves as an efficient observe coil. We compare power dissipation in a typical lossy bilayer sample in the new low-E probe and in a previously reported 15N-1H probe which uses a double-tuned 4-turn solenoid. RF loss in the sample is measured in each probe by observing changes in the 1H 360 degrees pulse lengths. For the same values of 1H B1 field, sample heating in the new probe was found to be smaller by an order of magnitude. Applications of the low-E design to the PISEMA study of membrane proteins in their native hydrated bilayer environment are demonstrated at 600 and 900 MHz.  相似文献   

18.
In clinical magnetic resonance imaging(MRI),the design of the radiofrequency(RF) coil is very important.For certain applications,the appropriate coil can produce an improved image quality.However,it is difficult to achieve a uniform B1 field and a high signal-to-noise ratio(SNR) simultaneously.In this article,we design an interventional transmitter-and-receiver RF coil for cerebral surgery.This coil adopts a disassembly structure that can be assembled and disassembled repeatedly on the cerebral surgery gantry to reduce the amount of interference from the MRI during surgery.The simulation results and the imaging experiments demonstrate that this coil can produce a uniform RF field,a high SNR,and a large imaging range to meet the requirements of the cerebral surgery.  相似文献   

19.
The use of surface coils in magnetic resonance is widespread. Examples include MRI, detection of subsurface aquifers by NMR, and, more recently, landmine detection by nuclear quadrupole resonance. In many of these cases a finite-sized sample to be examined is contained within a larger medium that is a poor electrical conductor, and eddy currents induced by the RF fields provide a loss mechanism that reduces the effective quality factorQof the transmitter and receiver coils. Here the losses induced in a circular surface coil (a horizontal loop antenna) separated a distance from a dissipative medium are calculated and compared to measurements. It is shown that often the overall efficiency of the coil for magnetic resonance can be improved by displacing the coil away from the conducting medium a prescribed “lift-off” distance. The use of a gradiometer as a surface coil is also examined, and it is shown by theory and experiment that in certain circumstances such a gradiometer can be more efficient than a conventional surface coil for inspection of conducting media.  相似文献   

20.
在临床磁共振成像(MRI)应用中,射频线圈的设计是非常关键的,针对不同的应用目的,合适的线圈能获得质量更好的图像. 有的应用需要线圈提供均匀性较好的射频场,而有的应用则需要线圈在特定区域内提供高的信噪比(SNR). 但是线圈很难同时得到好的射频场(B1场)、空间均匀性和高的SNR,需要根据实际应用情况进行折衷设计. 针对MRI在脑外科手术中的应用特点,设计并制作了一种新颖的、适用于脑外科手术的MRI接收和发射共用射频线圈. 该线圈采用可分拆式结构,在脑外科手术支架上可以进行反复组装和拆卸,减少了MRI对医生手术的影响. 仿真结果和人体成像实验表明,该线圈能产生均匀的射频场、有较高的SNR和较大的成像范围,满足脑外科手术的需要.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号