首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Sol–gel reactions of fluoroalkyl end‐capped trimethoxyvinylsilane oligomer in the presence of low molecular weight aromatic compounds (ArH) such as 1,1′‐bi(2‐naphthol) (BINOL) and 2‐hydroxy‐4‐methoxy benzophenone (HMB) were found to proceed smoothly under alkaline conditions at room temperature to give the corresponding fluorinated oligomeric silica nanocomposites‐encapsulated aromatic compounds (BINOL and HMB) [RF‐(VM‐SiO2)n‐RF/ArH nanocomposites]. UV light irradiation (λmax: 254 nm) toward RF‐(VM‐SiO2)n‐RF/ArH nanocomposites showed that photodegradation of encapsulated ArH was not observed at all in the fluorinated nanocomposites cores, although the parent ArH can exhibit an effective photodegradation behavior under similar conditions. Especially, encapsulated ArH can exhibit no weight loss corresponding to the contents of the aromatic compounds in the fluorinated nanocomposites even after calcination at 800°C. Therefore, fluoroalkyl end‐capped trimethoxyvinylsilane oligomer has high potential for not only the thermal resistance but also the UV resistance fluorinated polymeric materials. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Fluoroalkyl end‐capped acrylic acid, N,N‐dimethylacrylamide, N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide and vinyltrimethoxysilane oligomers reacted with polyamic acid possessing trimethoxysilyl groups under alkaline conditions to yield the corresponding fluoroalkyl end‐capped oligomers/polyamic acid/silica nanocomposites. These isolated fluorinated composite powders were found to afford nanometer size‐controlled fine particles with a good dispersibility and stability in water and traditional organic solvents. We succeeded in preparing new fluoroalkyl end‐capped oligomers/polyimide/silica nanocomposites by the imidization of fluorinated polyamic acid silica nanocomposites through the stepwise heating at 110 and 270°C under air atmosphere conditions. These fluorinated polyimide/silica nanocomposites thus obtained were applied to the surface modification of glass and poly(methyl methacrylate) (PMMA) to exhibit good hydro‐ and oleo‐phobic characteristics imparted by fluoroalkyl groups in the composites on their surface. In addition, the surface morphology of the modified glass treated with these fluorinated nanocomposites were analyzed by using FE‐SEM and DFM. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A variety of fluoroalkyl end‐capped N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer [RF‐(DOBAA)n‐ RF]/silica nanocomposites, in which the oligomer contents are 18–96%, were prepared by reactions of the corresponding fluorinated oligomer with tetraethoxysilane and silica nanoparticles under alkaline conditions. Each fluorinated oligomer/silica composite thus obtained is nanometer size‐controlled very fine particles (22–68 nm) possessing a good dispersibility and stability in a variety of solvents including water. Interestingly, the weight loss of RF‐(DOBAA)n‐RF/silica nanocomposites, in which the oligomer contents are 18–72%, were not observed at all even at 800°C, as well as the original silica nanoparticles, although the corresponding sub‐micrometer size‐controlled RF‐ (DOBAA)n‐RF/silica composites (particle size: 359 nm) decomposed completely at 800°C to afford the weight loss in proportion to the content of RF‐(DOBAA)n‐RF oligomer in composites. On the other hand, a slight weight loss of RF‐(DOBAA)n‐RF/silica nanocomposites, in which the oligomer contents are 75–94%, was observed at 800°C compared to that of the original silica nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
Fluoroalkyl end‐capped N,N‐dimethylacrylamide oligomer and N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer were reacted with phenylene‐ and biphenylene‐bridged ethoxysilanes under alkaline conditions to yield cross‐linked fluoroalkyl end‐capped oligomeric composites possessing aromatic siloxane segments as core units. These isolated fluorinated composite powders were found to be nanometer size‐controlled fine particles with a good dispersibility and stability in water and organic solvents. Nitrogen adsorption–desorption isotherms confirmed the presence of micropores in these nanocomposites; the micropore size estimated by the HK method was 0.7–0.8 nm. Interestingly, fluorinated nanocomposites possessing a higher micropore volume ratio were found to exhibit a selective encapsulation ability of fullerene into their composite cores. These fluorinated nanocomposites were also applied to the surface modification of poly(methyl methacrylate) film, resulting in a good oleophobicity imparted by fluorine on the surface. In addition, fluorescence emission was visibly observed only from the modified PMMA film surface treated with fluorinated nanocomposites possessing biphenylene units when irradiated by light. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A variety of fluoroalkyl end‐capped oligomers/silver nanocomposites were prepared by the reactions of silver ions with poly(methylhydrosiloxane) in the presence of fluoroalkyl end‐capped N,N‐dimethylacrylamide oligomer, N‐(1,1‐dimethyl‐3‐oxobutyl)acrylamide oligomer, N,N‐dimethylacrylamide cooligomer containing poly(dimethylsiloxane) segments in organic media such as toluene and 1,2‐ dichloroethane. These fluorinated oligomers/silver nanocomposites thus obtained were found to exhibit clear plasmon absorption bands around 420 nm related to the formation of silver nanoparticles. In particular, these composites could display narrow plasmon absorptions around 420 nm in toluene by the addition of trioctylamine (TOA). On the other hand, the corresponding non‐fluorinated N‐(1,1‐ dimethyl‐3‐oxobutyl)acrylamide oligomer was not able to afford such a plasmon absorption under similar conditions. These fluorinated oligomers/silver nanocomposites in organic media have been found to be stable for more than 10 days. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements showed that silver nanoparticles could be effectively encapsulated into fluorinated oligomeric aggregate cores to afford colloidal stable fluorinated oligomers/silver nanocomposites. Fluorinated oligomers/silver nanocomposites were also applied to the surface modification of traditional organic polymers such as polystyrene (PSt) and poly(methyl methacrylate) (PMMA) to exhibit not only a good oleophobicity imparted by fluorine but also a higher surface antibacterial activity related to the silver nanoparticles on their surface. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Fluoroalkyl end‐capped acrylic acid oligomer [RF‐(ACA)n‐RF] reacted with tetraethoxysilane and silica nanoparticles in the presence of low molecular weight aromatic compounds [ Ar‐H ] such as cetylpyridinium chloride (CPC) and bisphenol AF under alkaline conditions to afford RF‐(ACA)n‐RF/SiO2 nanocomposites‐encapsulated Ar‐H in 47–94% isolated yields. These fluorinated silica nanocomposites‐encapsulated Ar‐H can exhibit no weight loss behavior corresponding to the contents of Ar‐H after calcination at 800 °C under atmospheric conditions, although fluoroalkyl end‐capped acrylic acid oligomer in the nanocomposites decomposed completely under similar conditions. UV‐vis spectra of well‐dispersed methanol solutions of RF‐(ACA)n‐RF/SiO2/CPC nanocomposites before calcination show that CPC can be encapsulated into fluorinated silica nanocomposites with encapsulated ratios: 23–43%. The fluorinated nanocomposites after calcination was found to exhibit a higher antibacterial activity related to the presence of CPC in the composites. Encapsulated bisphenol AF into RF‐(ACA)n‐RF/SiO2 nanocomposites before and after calcination at 800 °C can exhibit a good releasing ability toward methanol with released ratios: 48 and 26%, respectively. 1H MAS NMR, HPLC analysis, and LC‐MS spectra of RF‐(ACA)n‐RF/silica nanocomposites‐encapsulated bisphenol AF also showed the presence of bisphenol AF in the nanocomposites even after calcination at 800 °C under atmospheric conditions. These findings suggest that CPC and bisphenol AF can exhibit a nonflammable characteristic in the fluorinated silica nanocomposites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
Novel fluoroalkyl end‐capped vinyltrimethoxysilane oligomer/hydroxyapatite (HAp) nanocomposites were prepared by the reaction of calcium nitrate tetrahydrate and phosphoric acid in the presence of the corresponding oligomer. These fluorinated oligomer/HAp composites thus obtained are nanometer size‐controlled fine particles (83–173 nm), and were found to exhibit good dispersibility in methanol, ethanol, and isopropyl alcohol. These fluorinated HAp nanocomposites were applied to the surface modification of glass and poly(methyl methacrylate) (PMMA) to exhibit good hydro‐ and oleophobic characteristics imparted by fluorine on their surface. In addition, the surface structural changes of the modified polyethylene terephtalate and PMMA films treated with these fluorinated nanocomposites before and after soaking in a simulated body fluid (SBF) were analyzed by using SEM, XRD, and EDX to observe the formation of spherical HAp deposits on the surface. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
Aromatic ketones such as 4′‐methoxyacetophenone (MAP), acetophenone (AP), 4‐acetylbiphenyl (ABP), and 2‐acetyl‐6‐methoxynapthalene (AMN) interacted with fluoroalkyl end‐capped 2‐acrylamido‐2‐methylpropanesulfonic acid oligomer [RF‐(AMPS)n‐RF] at 80°C for 3 h to give the corresponding fluorinated oligomer/aromatic ketones composites. In these composites, the RF‐(AMPS)n‐RF/MAP and /AP composites were found to give the homoaldol condensation products of MAP and AP, respectively. In contrast, the corresponding non‐fluorinated AMPS oligomer/MAP and sulfuric acid/MAP composites could not give the homoaldol product at all under similar conditions. This suggests that the RF‐(AMPS)n‐RF oligomer could provide the suitable fluorinated oligomeric gel newtwok cores to interact with MAP or AP as a guest molecule, and the homoaldol condensation of encapsulated MAP and AP should proceed smoothly in the fluorinated oligomeric gel network cores. The RF‐(AMPS)n‐RF/ABP and /AMN composites could not give the homoaldol products at all under similar conditions, indicating that the more bulky aromotic ketones than MAP or AP are not likely to be encapasulated as guest molecules into the fluorinated AMPS oligomeric gel netwok cores. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Perfluoropolyether dicarboxylic acid [HO(O?)CCF(CF3){OCF2CF(CF3)}nO(CF2)5O{CF(CF3)CF2O}m―CF(CF3)C(?O)OH; n + m = 6–12; PFPE‐DAcD] was applied to the preparation of PFPE‐DAcD/SiO2 nanocomposites by the sol–gel reactions of the corresponding diacid with tetraethoxysilane in the presence of silica nanoparticles under alkaline conditions. PFPE‐DAcD/SiO2 nanocomposites thus obtained were found to exhibit a good dispersibility and stability in not only water but also the traditional organic solvents such as methanol, ethanol, 2‐propanol, tetrahydrofuran, and 1,2‐dichloroethane. Field emission scanning electron micrograph (FE‐SEM) and dynamic light‐scattering (DLS) measurements show that these fluorinated composites are nanometer size‐controlled very fine particles. Dodecane and water contact angle measurements on the modified glass, filter paper, and polyester fabric surfaces treated with these fluorinated nanocomposites were found to exhibit the superoleophobicity and superhydrophilicity. Especially, the modified polyester fabric swatch was applied to the oil/water separation to give the high separation efficiency. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
In this work, a new kind of co‐modified phenolic foam was synthesized with polyurethane prepolymer (PUP) and H3BO3 by a simple preparation method. Firstly, in order to determine the optimal amount of PUP, the effects of different PUP additions on the mechanical properties, foam microstructure, and pulverization rate of phenolic foam were investigated. Then H3BO3 was added to toughened phenolic foam, in order to reduce its fire hazard. The results showed that the mechanical properties of the PFPUP8 phenolic foam composite were the best when the PUP content was 8 wt%. It had a small and regular cell structure, and its pulverization ratio was reduced by 80% compared with that of pristine phenolic foam. Meanwhile, the flame retardant properties of PFPUP8 were improved in different degrees with an increase in the amount of H3BO3. Particularly, when the addition of H3BO3 was 10 wt%, the peak heat release rate, the total heat release, and the total smoke release values of PFPUP10B were decreased by 35.4%, 42.4%, and 45.2%, respectively, compared with those of PFPUP8. The value of the limit oxygen index was increased by 33.1%. Besides, the addition of H3BO3 had no adverse effect on the mechanical properties and pulverization ratio of PFPUP8. In addition, the specific mechanisms of toughening, flame retardant, and smoke suppression are also discussed in this paper on the basis of an investigation into the thermal properties of the toughened flame retardant foam composites by thermogravimetric analysis in N2 atmosphere.  相似文献   

11.
Poly (lactic acid) (PLA) was synthesized using d , l ‐lactide monomer and zinc oxide (ZnO) pillared organic saponite as the green catalyst, through ring‐opening polymerization. The effects of stoichiometry of catalyst and polymerization conditions on molecular weight of PLA were evaluated by orthogonal experiment. The optimum polymerization parameters were: 0.5 wt% ZnO pillared organic saponite and reaction conditions of 170°C for 20 hr. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy confirmed the PLA structure. Gel permeation chromatography showed that the average molecular weight of PLA was 48,442 g/mol, and its polydispersity index was 1.875. Differential scanning calorimetry, X‐ray diffraction, and polarized optical microscopy showed that ZnO pillared organic saponite improved the crystallinity of PLA. Thermal gravimetric analysis showed improved thermal stability of PLA because of ZnO pillared organic saponite. Thermal decomposition kinetics of PLA/ZnO pillared organic saponite nanocomposites was also studied. The activation energies (Ea) for thermal degradation of PLA and PLA/ZnO pillared organic saponite nanocomposites were evaluated by the Kissinger and Ozawa methods, which demonstrated that ZnO pillared organic saponite enhanced Ea of thermal degradation of PLA and significantly improved its thermal stability. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号