首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The confinement effects introduced by nanoparticles have been reported to influence the phase behaviors thus the properties of polymer nanocomposites. In this study, molecular dynamics and crystallization behaviors of polyethylene (PE) composited with three types of silica (SiO2) nanoparticles, namely unmodified SiO2, hydrophobically modified SiO2, SiO2‐APTES (3‐aminopropyltriethoxysilane) and SiO2‐PTES (n‐propyltriethoxysilane), were systematically investigated via a combination of DSC, XRD and 1H solid‐state NMR measurements. The suppressions in crystallization and chain mobilities of PE rank in the order of unmodified SiO2 < SiO2‐APTES < SiO2‐PTES due to the increasing interfacial interactions between PE and SiO2 nanoparticles. Additionally, independent of polymer–nanoparticle interactions, a silica network forms for all three kinds of nanocomposites when SiO2 content reaches 83 wt %. The mobilities of polymer chains are severely restricted by such a percolated network structure, leading to a turning point in the crystallization ability of nanocomposites and a new crystallization peak at 45 °C lower than that of pure PE. The synergetic effects of interfacial interactions and filler network on polymer crystallization have been thoroughly studied in this work, which will provide guidance on modifying and designing nanocomposites with controlled properties. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 498–505  相似文献   

3.
Poly(ethylene oxide) (PEO) of 4600 molar mass (PEO‐4600) was crystallized from methanol in the presence of hydrophilic fumed silicas (A380, A200, and OX50) with nominal surface areas of 380, 200, and 50 m2/g and a hydrophobic fumed silica (R812s) modified with methyl groups. The composites were characterized by thermogravimetric analysis and differential scanning calorimetry. The inhibition of crystallization and the tendency for chain reorganization after melting were in the order of A380 > A200 > OX50 > R812s, respectively, that is, both were least for the hydrophobic silica and increased with increasing specific surface area for the hydrophilic silica. The interaction of PEO with the silica increased in the melt state as compared with the solution‐cast samples, resulting in enhanced suppression of crystallization. The following took place at a high silica content: (1) crystallization occurred at crystallization temperatures [Tc < Tc (bulk)], suggesting that the silica inhibited crystallization; (2) crystallites with melt temperatures [Tm < Tm (bulk)] were observed, indictive of smaller and/or less perfect crystals; and (3) melt entropies [ΔSm (surface) < ΔSm (bulk)] suggested that the interaction of surface silanols, SisOH, with PEO decreased both the melt entropy and crystallite size/perfection. Crystallinity was observed in solution‐cast composites when there were greater than ~0.03 PEO molecules/nm2 for native and ~0.01 PEO molecules/nm2 for methylated fumed silica, similar to reported plateau equilibrium adsorption values from methanol. These results were consistent with a model in which PEO interacted more strongly with native fumed silica as compared with hydrophobically modified silica because of hydrogen bonding of the ether oxygens of PEO with the acidic silanols, preventing chain mobility and crystallization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1978–1993, 2003  相似文献   

4.
The thermomechanical behavior of polymer nanocomposites is mostly governed by interfacial properties which rely on particle–polymer interactions, particle loading, and dispersion state. We recently showed that poly(methyl methacrylate) (PMMA) adsorbed nanoparticles in poly(ethylene oxide) (PEO) matrices displayed an unusual thermal stiffening response. The molecular origin of this unique stiffening behavior resulted from the enhanced PEO mobility within glassy PMMA chains adsorbed on nanoparticles. In addition, dynamic asymmetry and chemical heterogeneities existing in the interfacial layers around particles were shown to improve the reinforcement of composites as a result of good interchain mixing. Here, the role of chain rigidity in this interfacially controlled reinforcement in PEO composites is investigated. We show that particles adsorbed with less rigid polymers improve the mechanical properties of composites. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 9–14  相似文献   

5.
The crystallinity of polyelectrolytes has long been known to affect their ionic conductivity, but the effects of water of hydration on polyelectrolyte structure are not commonly studied. Here, polymer complexes consisting of poly(ethylene oxide) (PEO) with magnesium chloride (anhydrous MgCl2, MgCl2·4H2O, and MgCl2·6H2O, respectively) have been prepared by a mixed‐solvent method. Fourier transform‐infrared measurements indicate each magnesium chloride salt can coordinate with PEO to form a complex. The structures of (PEO)xMgCl2·4H2O and (PEO)xMgCl2·6H2O complexes are similar, whilst the structure of (PEO)xMgCl2 complex is different to both. Wide angle X‐ray diffraction studies indicate in each polymer complex system the crystallization of PEO is depressed by the interaction of magnesium cation with the ether oxygen of PEO. PEO in (PEO)xMgCl2 and (PEO)xMgCl2·4H2O are shown to be amorphous, but in (PEO)xMgCl2·6H2O it is crystalline. Polar optical microscopy images indicate in each PEO/magnesium chloride system the crystalline morphology clearly changes with the increase of magnesium salt content. The reason for the formation of the spherulites with special morphology are the strong interaction between magnesium cation and ether oxygen of PEO, and the different evaporation rates of ethanol and chloroform in mixed solvent. A better understanding of the effects of hydration on polyelectrolyte crystallinity can help in improving their use in a variety of applications. © 2013 Wiley Periodicals, Inc. J Polym Sci Part B: Polym. Phys. 2013, 51, 1162–1174  相似文献   

6.
We examine the crystallization and chain conformation behavior of semicrystalline poly(ethylene oxide) (PEO) and amorphous poly(vinyl acetate) (PVAc) mixtures with wide‐angle X‐ray diffraction (WAXD), small‐angle X‐ray scattering (SAXS), and small‐angle neutron scattering (SANS) experiments. For blends with PEO weight fractions (wtPEO) greater than or equal to 0.3, below the melting point of PEO, the WAXD patterns reveal that crystalline PEO belongs to the monoclinic system. The unit‐cell parameters are independent of wtPEO. However, the bulk crystallinity determined from WAXD decreases as wtPEO decreases. The scattered intensities from SAXS experiments show that the systems form an ordered crystalline/amorphous lamellar structure. In a combination of WAXD and SAXS analysis, the related morphological parameters are assigned correctly. With the addition of amorphous PVAc, both the average amorphous layer thickness and long spacing increase, whereas the average crystalline layer thickness decreases. We find that a two‐phase analysis of the correlation function from SAXS, in which the scattering invariant is linearly proportional to the volume fraction of lamellar stacks, describes quantitatively the crystallization behavior of PEO in the presence of PVAc. When wtPEO is close to 1, the samples are fully spaced‐filled with lamellar stacks. As wtPEO decreases from 1.0 to 0.3, more PVAc chains are excluded from the interlamellar region into the interfibrillar region. The fraction outside the lamellar stacks, which is completely occupied with PVAc chains, increases from 0 to 58%. Because the radius of gyration of PVAc with a random‐coil configuration determined from SANS is smaller than the average amorphous layer thickness from SAXS, we believe that the amorphous PVAc chains still persist with a random‐coil configuration even when the blends form an ordered structure. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2705–2715, 2001  相似文献   

7.
Poly(2‐alkyl‐2‐oxazoline)s (PAOx) exhibit different crystallization behavior depending on the length of the alkyl side chain. PAOx having methyl, ethyl, or propyl side chains do not show any bulk crystallization. Crystallization in the heating cycle, that is, cold crystallization, is observed for PAOx with butyl and pentyl side chains. For PAOx with longer alkyl side chains crystallization occurs in the cooling cycle. The different crystallization behavior is attributed to the different polymer chain mobility in line with the glass transition temperature (Tg) dependency on alkyl side chain length. The decrease in chain mobility with decreasing alkyl side chain length hinders the relaxation of the polymer backbone to the thermodynamic equilibrium crystalline structure. Double melting behavior is observed for PButOx and PiPropOx which is explained by the melt‐recrystallization mechanism. Isothermal crystallization experiments of PButOx between 60 and 90 °C and PiPropOx between 90 and 150 °C show that PAOx can crystallize in bulk when enough time is given. The decrease of Tg and the corresponding increase in chain mobility at T > Tg with increasing alkyl side chain length can be attributed to an increasing distance between the polymer backbones and thus decreasing average strength of amide dipole interactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 721–729  相似文献   

8.
All-solid-state polymer lithium-ion batteries are ideal choice for the next generation of rechargeable lithium-ion batteries due to their high energy, safety and flexibility. Among all polymer electrolytes, PEO-based polymer electrolytes have attracted extensive attention because they can dissolve various lithium salts. However, the ionic conductivity of pure PEO-based polymer electrolytes is limited due to high crystallinity and poor segment motion. An inorganic filler SiO2 nanospheres and a plasticizer Succinonitrile (SN) are introduced into the PEO matrix to improve the crystallization of PEO, promote the formation of amorphous region, and thus improve the movement of PEO chain segment. Herein, a PEO18−LiTFSI−5 %SiO2−5 %SN composite solid polymer electrolyte (CSPE) was prepared by solution-casting. The high ionic conductivity of the electrolyte was demonstrated at 60 °C up to 3.3×10−4 S cm−1. Meanwhile, the electrochemical performance of LiFePO4/CSPE/Li all-solid-state battery was tested, with discharge capacity of 157.5 mAh g−1 at 0.5 C, and capacity retention rate of 99 % after 100 cycles at 60 °C. This system provides a feasible strategy for the development of efficient all-solid-state lithium-ion batteries.  相似文献   

9.
The effect of the chain constraint on the glass‐transition temperature of polystyrene (pS) was studied in the context of polymer tethering to curved surfaces. The synthesis and characterization of silica‐graft‐polystyrene (SiO2g‐pS) hybrid nanoparticles is reported. Silica nanoparticles possessing covalently bound pS chains were prepared by the atom transfer radical polymerization of styrene from functionalized colloidal surfaces. These hybrid nanoparticles serve as interesting examples of spherical polymer brushes, as a high density of grafted pS was achieved on the inorganic colloid. The confirmation of a brushlike extension of immobilized chains in a good solvent was obtained with dynamic light scattering in toluene of SiO2g‐pS colloids possessing various molar masses of tethered pS. The solid‐state morphology of SiO2g‐pS ultrathin films was assessed with transmission electron microscopy, and this confirmed that the silica colloids were well‐dispersed in a matrix of the tethered polymer. Differential scanning calorimetry was used to study the effects of tethering and chain immobilization on the glass‐transition temperature of pS. The measured glass‐transition temperature of annealed bulk films of the hybrid nanoparticles was elevated with respect to the value for pure bulk pS. The enhancements ranged from 13 to 2 K for SiO2g‐pS brushes possessing tethered pS with number‐average molecular weights of 5230 and 32,670 g/mol, respectively. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2667–2676, 2002  相似文献   

10.
The supercritical CO2 (sc‐CO2) provided a moderate condition to make the amorphous CO2/poly(ether ether ketone) (PEEK) mixtures at 30 MPa and 40 °C. The crystal is obtained directly after treating CO2/PEEK mixture from 70 to 240 °C. The crystallization behavior of CO2/PEEK mixtures before and after treatment is investigated in detail by using differential scanning calorimetry (DSC), dynamic mechanical analysis, and wide‐angle X‐ray diffraction. DSC curves of CO2/PEEK samples showed the double cold crystallization peaks. The lower cold crystallization peak moves to higher temperature with the content of CO2 decreasing, and the higher cold crystallization peak keeps their temperatures at about 172 °C without a remarkable change. The dynamic mechanical spectrometry was also introduced to explain the relaxation behavior of the glass transition and crystallization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2927–2936, 2007  相似文献   

11.
The slow isothermal crystallization of concentrated amorphous starch systems is measured by Modulated Differential Scanning Calorimetry (MDSC). It can be followed continuously by the evolution (stepwise decrease) of the MDSC heat capacity signal (Cp), as confirmed with data from X-ray diffractometry, Dynamic Mechanical Analysis, Raman spectroscopy, and conventional Differential Scanning Calorimetry. Isothermal MDSC measurements enable a systematic study of the slow crystallization process of a concentrated starch system, such as a pregelatinized waxy corn starch with 24 wt % water and 76 wt % starch. After isothermal crystallization, a broad melting endotherm with a bimodal distribution is observed, starting about 10°C beyond the crystallization temperature. The bulk glass transition temperature (Tg) decreases about 15°C during crystallization. The isothermal crystallization rate goes through a maximum as a function of crystallization time. The maximum rate is characterized by the time at the local extreme in the derivative of Cp (tmax), or by the time to reach half the decrease in Cp (t1/2). Both tmax and t1/2 show a bell-shaped curve as a function of crystallization temperature. The temperature of maximum crystallization rate, for the system studied, lies as high as 75°C. This is approximately 65°C above the initial value of Tg. Normalized Cp curves indicate the temperature dependence of the starch crystallization mechanism. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2881–2892, 1999  相似文献   

12.

In this work, we present a comprehensive and systematic study on the use of low-cost and highly abundant carbon precursors to obtain SiO2/C anodes with superior electrochemical performance towards Li-ions. Different SiO2/C composites are prepared by soaking silica nanoparticles in solutions containing 20 wt%, 40 wt%, or 60 wt% of glucose, sucrose, or cornstarch, followed by thermal decomposition of the carbohydrates at 850 °C or 1200 °C. Structural, microstructural, and textural differences on the composites derived from the different carbon coating treatments are related to the electrochemical performance of the anodes. Composites containing final carbon contents close to 15 wt% show a complete coverage of the SiO2 particles with a nanometric carbon layer and exhibit the best electrochemical results. The increase in the annealing temperature from 850 to 1200 °C reduces the porosity of the carbon layer and increases its level of ordering, both having positive effects on the overall electrochemical performance of the electrodes. SiO2/C composites coated with 40 wt% sucrose and heat treated at 1200 °C display the best electrochemical performance, delivering a reversible specific capacity of 723 mAhg−1 at 50 mAg−1 after 100 cycles, which is considerably higher than the reversible capacity of 233 mAhg−1 obtained with the uncoated material cycled under the same conditions.

  相似文献   

13.
The objective of this article is to fabricate poly(lactic acid) (PLA) and nano silica (SiO2) composites and investigate effect of SiO2 on the properties of PLA composites. Surface‐grafting modification was used in this study by grafting 3‐Glycidoxypropyltrimethoxysilane (KH‐560) onto the surface of silica nanoparticles. The surface‐grafting reaction was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Then the hydrophilic silica nanoparticles became hydrophobic and dispersed homogeneously in PLA matrix. Scanning electron microscope and Dynamic thermomechanical analysis (DMA) results revealed that the compatibility between PLA and SiO2 was improved. Differential scanning calorimetry and polarized optical microscope tests showed that nano‐silica had a good effect on crystallization of PLA. The transparency analysis showed an increase in transparency of PLA, which had great benefit for the application of PLA. The thermal stability, fire resistance, and mechanical properties were also enhanced because of the addition of nano silica particles. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
The effect of aging on the fractional crystallization of the poly(ethylene oxide) (PEO) component in the PEO/poly(3‐hydroxybutyrate) (PHB) blend has been investigated. The partial miscibility of the PEO/PHB blends with high PEO molecular weight (Mv = 2.0 × 105 g/mol) was confirmed by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis. The fractional crystallization behavior of the PEO component in the PEO/PHB blends with low PEO content (not more than 30 wt% of PEO), before and after aging under vacuum at 25 °C for 6 months, were compared by DSC, fourier transform infrared microscopic spectroscopy, small angle X‐ray diffraction, and scanning electron microscopy. It was confirmed that nearly all the PEO components remain trapped within interlamellar regions of PHB for the PEO/PHB blends before aging. Under this condition, the crystallization of PEO is basically induced by much less active heterogeneities or homogeneous nucleation at high supercoolings. While, after the same PEO/PHB samples were stored at 25 °C in vacuum for 6 months, a part of the PEO component was expelled from the interlamellar region of PHB. Under this condition, the expelled PEO forms many separate domains with bigger size and crystallizes at low supercoolings by active heterogeneous nucleation, whereas the crystallization of PEO in the interlamellar region is still mainly induced by less active heterogeneities or homogeneous nucleation at extreme supercoolings. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2665–2676, 2005  相似文献   

15.
姬相玲 《高分子科学》2013,31(9):1290-1298
A mixed system that includes poly(ethylene oxide) (PEO) and silica (SiO2) nanoparticles is prepared using two mixing methods. The interaction between PEO and the SiO2 nanoparticles in the dilute basic solution is investigated using the dynamic light scattering (DLS) and isothermal titration calorimetry (ITC) techniques. The DLS results show qualitatively that SiO2 nanoparticles interact with both random coils and aggregates of PEO through hydrogen bonding, and PEO-SiO2 complexes are formed. The degree of disaggregation of aggregates of PEO is readily adjusted by changing the concentration of SiO2 nanoparticle suspensions. Moreover, the ITC results also certify quantitatively the interaction between PEO and SiO2 nanoparticle, and give the evidence of formation of PEO-SiO2 complex.  相似文献   

16.
The processes taking place on air-heating of SiO2−Ag+ films and xerogels produced from the SiO2 sols of different pH (3.7 or 9.5) were investigated. Silver nanoparticles 10–40 nm in size tolerant to oxidation at temperatures above 600 °C were found to be formed in the systems whatever the pH value of the starting sol. SiO2 crystallization giving the cristobalite phase in the temperature range from 500 to 800 °C was shown to proceed only in the films produced from the acidic sol, while in those formed from the alkali one SiO2 remained amorphous. A mechanism by which the formation of Ag nanoparticles and the cristobalite phase occurs in the films at the oxidative conditions is suggested.  相似文献   

17.
Polymer composites composed of poly(methyl methacrylate) (PMMA) and silica (14 nm diameter) have been investigated. The influences of sample preparation and processing have been probed. Two types of sample preparation methods were investigated: (i) solution mixture of PMMA and silica in methyl ethyl ketone and (ii) in situ synthesis of PMMA in the presence of silica. After removing all solvent or monomer, as confirmed using thermogravimetric analysis, and after compression molding, drops in Tg of 5–15 °C were observed for all composites (2–12% w/w silica) and even pure polymer reference samples. However, after additional annealing for 72 h at 140 °C, all previously observed drops in Tg disappeared, and the intrinsic Tg of bulk, pure PMMA was again observed. This is indicative of nonequilibrium trapped voids being present in the as‐molded samples. Field‐emission scanning electron microscopy was used to show well‐dispersed particles, and dynamic mechanical analysis was used to probe the mechanical properties (i.e., storage modulus) of the fully equilibrated composites. Even though no equilibrium Tg changes were observed, the addition of silica to the PMMA matrices was observed to improve the mechanical properties of the glassy polymer host. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2270–2276, 2007  相似文献   

18.
A method was adopted to fix a series of polymers of PE‐b‐PEO with different PEO/PE segments on the chains of LLDPE. Maleic anhydride (MA) reacting with hydroxyl group of PE‐b‐PEO (mPE‐b‐PEO) was used as the intermediate. The structures of intermediates and graft copolymers were approved by 1H NMR and FTIR. XPS analysis revealed a great amount of oxygen on the surface of grafted copolymers although the end group of PEO was fixed on the LLDPE chains through MA. Thermal properties of the graft copolymers as determined by differential scanning calorimetry (DSC) showed that PE segments in the grafted monomers could promote the heterogeneous nucleation of the polymer, increase Tc, and crystal growth rate. While the amorphous PEO segments which attached to the crystalline PE segments in LLDPE, impaired their ability to fit the crystal lattice, and depressed the crystallization of LLDPE backbones. In this study, it was also verified through the dynamic rheological data that increasing Mn of grafted monomers significantly increased the complex viscosity and enhanced the shear‐thinning behavior. Long‐branched chains formed by grafted monomers enhanced the complex moduli (G′ and G″) value and retarded relaxation rate. However, there were little influence on the rheological properties when increasing the amounts of PEO segments (or decreasing PE segments) of grafted monomers with similar molecular weight. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 506–515, 2008  相似文献   

19.
The morphological development and crystallization behavior of a poly(ethylene terephthalate)/poly(hydroxyl ether of bisphenol A) (phenoxy) blend were studied with time‐resolved light scattering, optical microscopy, differential scanning calorimetry, and small‐angle X‐ray scattering (SAXS). During annealing at 280 °C, liquid–liquid phase separation via spinodal decomposition proceeded in the melt‐extruded specimen. After the formation of a domain structure, the blend slowly underwent phase homogenization by the interchange reactions between the two polymers. Specimens annealed for various times (ts) at 280 °C were subjected to a temperature drop and the effects of liquid‐phase changes on crystallization were then investigated. The shifts in the position of the cold‐crystallization peaks indicated that the crystallization rate is associated with the composition change of the separated phases as well as the change of the sequence distribution in polymer chains during annealing. The morphological parameters at the lamellar level were determined by a correlation function analysis on the SAXS data. The crystal thickness (lc) increased with ts, whereas the amorphous layer thickness (la) showed little dependence on ts. Observation of a constant la value revealed that a large number of noncrystallizable species formed by the interchange reactions between the two polymers were excluded from the lamellar stacks and resided in the interfibrillar regions, interspherulitic regions, or both. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 223–232, 2008  相似文献   

20.
The crystallization of amorphous chemically homogeneous powders in the SiO2.Al2O3 system has been studied by differential scanning calorimetry and X-ray diffraction. Up to 1300°C only one exotherm has been observed. Only mullite crystallizes for compositions ≤69 mol% Al2O3 and spinel for those ≤80%. The crystallizations into mullite and spinel are sharp and exothermic, with an enthalpy of 250–300 J/g. The chemical composition of the crystallized mullite regularly increases from 68 to 76 mol% Al2O3 with increasing bulk composition from 60 to 75 mol% Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号