首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multifunctional polyelectrolyte (or layer‐by‐layer, LbL) multilayers consisting of a set of nanocompartments separated by impermeable ultrathin barriers, whereby the thickness of the compartments is tuned in the range 1–10 nm, are synthesized. Each compartment contains a different dye, introduced by co‐adsorption during multilayer deposition. Different LbL barriers are tested for impermeability towards dye diffusion while simultaneously allowing energy transfer to occur between the compartmentalized dyes. Cross‐linked LbL multilayers based on poly(acrylic acid) and poly(allyl amine) are shown to provide the desired impermeability for thicknesses as small as about 2.5 nm. A proof‐of‐concept system is then realized involving a cascade of two FRET processes, whereby the light energy is collected in a first nanocompartment containing pyranine, sent to a second nanocompartment loaded with fluorescein, before finally being transferred to a third, Nile blue‐filled compartment located at the external surface of the film. This demonstrates the possibility to fabricate complex light‐harvesting antenna systems by LbL assembly while controlling the architecture of the antenna down to a few nanometers.  相似文献   

2.
    
Solvent vapor annealing (SVA) is one route to prepare block copolymer (BCP) thin films with long‐range lateral ordering. The lattice defects in the spin‐coated BCP thin film can be effectively and rapidly reduced using SVA. The solvent evaporation after annealing was shown to have a significant impact on the in‐plane ordering of BCP microdomains. However, the effect of solvent evaporation on the out‐of‐plane defects in BCPs has not been considered. Using grazing‐incidence x‐ray scattering, the morphology evolution of lamellae‐forming poly(2‐vinlypyridine)‐b‐polystyrene‐b‐poly(2vinylpyridine) triblock copolymers, having lamellar microdomains oriented normal to substrate surface during SVA, was studied in this work. A micelle to lamellae transformation was observed during solvent uptake. The influence of solvent swelling ratio and solvent removal rate on both the in‐plane and out‐of‐plane defect density was studied. It shows that there is a trade‐off between the in‐plane and out‐of‐plane defect densities during solvent evaporation. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 980–989  相似文献   

3.
    
We have demonstrated directed self‐assembly of poly(styrene‐b‐dimethylsiloxiane) (PS‐b‐PDMS) down to sub‐10‐nm half‐pitch by using grating Si substrate coated with PDMS. The strong segregation between PS and PDMS enables us to direct the self‐assembly in wide grooves of the grating substrate up to 500 nm in width. This process can be applied to form various type of sub‐10‐nm stripe pattern along variety of grating shape. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010  相似文献   

4.
5.
    
The self‐assembly of a metallo‐supramolecular PS‐[Ru]‐PEO block copolymer, where ‐[Ru]‐ is a bis‐2,2′:6′,2″‐terpyridine‐ruthenium(II) complex, in thin films was investigated. Metallo‐supramolecular copolymers exhibit a different behavior as compared to their covalent counterparts. The presence of the charged complex at the junction of the two blocks has a strong impact on the self‐assembly, effecting the orientation of the cylinders and ordering process. Poly(ethylene oxide) cylinders oriented normal to the film surface are obtained directly regardless of the experimental conditions over a wide range of thicknesses. Exposure to polar solvent vapors can be used to improve the lateral ordering of the cylindrical microdomains. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4719–4724, 2008  相似文献   

6.
7.
8.
The adsorption of individual Violet Lander molecules self‐assembled on the c(8×2) reconstructed InSb(001) surface in its native form and on the surface passivated with one to three monolayers of KBr is investigated by means of low‐temperature scanning tunneling microscopy (STM). Preferred adsorption sites of the molecules are found on flat terraces as well as at atomic step edges. For molecules immobilized on flat terraces, several different conformations are identified from STM images acquired with submolecular resolution and are explained by the rotation of the 3,5‐di‐tert‐butylphenyl groups around σ bonds, which allows adjustment of the molecular geometry to the anisotropic substrate structure. Formation of ordered molecular chains is found at steps running along substrate reconstruction rows, whereas at the steps oriented perpendicularly no intermolecular ordering is recorded. It is also shown that the molecules deposited at two or more monolayers of the epitaxial KBr spacer do not have any stable adsorption sites recorded with STM. Prospects for the manipulation of single molecules by using the STM tip on highly anisotropic substrates are also explored, and demonstrate the feasibility of controlled lateral displacement in all directions.  相似文献   

9.
    
Square‐millimeter‐sized free‐floating translucent films are formed in physiological buffer by multiway connections between biotinylated collagen‐like triple‐helical peptides and avidin. Although the compositions of the films are almost constant, regardless of the ratios of the components loaded, their thicknesses can be controlled by the concentrations of the components. The film surfaces can be further modified by taking advantage of exposed biotin (or avidin) functionalities. The self‐assembled films could serve as novel materials in biomedical and biosensing applications.  相似文献   

10.
    
A facile route to reassemble titania nanoparticles within the titania‐block copolymer composite films has been developed. The titania nanoparticles templated by the amphiphilic block copolymer of poly(styrene)‐block‐poly (ethylene oxide) (PS‐b‐PEO) were frozen in the continuous PS matrix. Upon UV exposure, the PS matrix was partially degraded, allowing the titania nanoparticles to rearrange into chain‐like networks exhibiting a closer packing. The local structures of the Titania chain‐like networks were investigated by both AFM and SEM; the lateral structures and vertical structures of the films were studied by GISAXS and X‐ray reflectivity respectively. Both the image analysis and X‐ray scattering characterization prove the reassembly of the titania nanoparticles after UV exposure. The mechanism of the nanoparticle assembly is discussed.  相似文献   

11.
    
We report the simple one‐pot synthesis of size tunable zinc oxide nanoparticles (ZnO NPs) out of an organometallic ZnO precursor using the self‐assembly of solution phase polystyrene‐block‐poly(2‐vinylpyridine) micelles. The resulting hybrid material could be deposited on various substrates in a straightforward manner with the NPs showing size‐dependent absorption and photoluminescence due to the quantum‐size effect. We compare the results to the assembly of preformed NPs which are selectively incorporated in the poly(2‐vinylpyridine) core of the micelles due to the high affinity of ZnO to vinylpyridine.

  相似文献   


12.
    
The fabrication of block copolymer (BCP) thin films is reported with vertically aligned cylindrical domains using continuous electrospray deposition onto bare wafer surfaces. The out‐of‐plane orientation of hexagonally packed styrene cylinders is achieved in the “fast‐wet” deposition regime in which rapid evaporation of the solvent in deposited droplets of polymer solution drives the vertical alignment of the self‐assembled structure. Thermally activated crosslinking of the polybutadiene matrix provides kinetic control of the morphology, freezing the vertical alignment and preventing relaxation of the system to its preferred parallel orientation on the nontreated substrate. Physically continuous vertically oriented domains can be achieved over several micrometers of film thickness. The ability of electrospray deposition to fabricate well‐ordered and aligned BCP films on nontreated substrates, the low amount of material used relative to spin‐coating, and the continuous nature of the deposition may open up new opportunities for BCP thin films.

  相似文献   


13.
    
Application of traditional block copolymer microscopy techniques to gradient copolymers yields limited results, due to the low compositional contrast provided from the sinusoidal composition profiles of their phase segregated nanostructures. In contrast, optical microscopy and profilometry allow for the first direct visualization of their phase segregation properties through surface features formed in annealed thin films. Three comonomer systems are studied; one block and one gradient copolymer are compared for each system. Island/hole topography is observed in all block cases. Of the three gradient copolymers, one showed no pattern development and two showed emergence of island/hole patterns, which coarsen over initial annealing and then appear to anneal away. These results are related to the lower driving force for phase segregation from gradient sequencing, which lowers the potential of gradient copolymers to form island/hole patterns and also to pin any patterns formed. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

14.
A series of optically active helical polyphosphazene block copolymers of general formula R? [N?P(O2C20H12)]nb‐[N?PMePh]m (R‐ 7 a – c ) was synthesized and characterized. The polymers were prepared by sequential living cationic polycondensation of N‐silylphosphoranimines using the mono‐end‐capped initiator [Ph3P?N?PCl3][PCl6] ( 5 ) and exhibit a low polydispersity index (ca. 1.3). The temperature dependence of the specific optical activity ([α]D) of R‐ 7 a , b relative to that for the homopolymers R‐[N?P(O2C20H12)]n (R‐ 8 a ) and the R/S analogues (R/S‐ 7 a , b ), revealed that the binaphthoxy–phosphazene segments induce a preferential helical conformation in the [N?PMePh] blocks through a “sergeant‐and‐soldiers” mechanism, an effect that is unprecedented in polyphosphazenes. The self‐assembly of drop‐cast thin films of the chiral block copolymer R‐ 7 b (bearing a long chiral and rigid R? [N?P(O2C20H12)] segment) evidenced a transfer of helicity mechanism, leading to the formation of twisted morphologies (twisted “pearl necklace”), not observed in the nonchiral R/S‐ 7 b . The chiral R‐ 7 a and the nonchiral R/S‐ 7 a , self‐assemble by a nondirected morphology reconstruction process into regular‐shaped macroporous films with chiral‐rich areas close to edge of the pore. This is the first nontemplate self‐assembly route to chiral macroporous polymeric films with pore size larger than 50 nm. The solvent annealing (THF) of these films leads to the formation of regular spherical nanostructures (ca. 50 nm), a rare example of nanospheres exclusively formed by synthetic helical polymers.  相似文献   

15.
Due to its simplicity and cost‐effectiveness, single solution casting of organic optoelectronics has grown in popularity for device fabrication to produce technologies such as organic photovoltaics and thin film transistors. In order to explore the structural evolution that occurs in the film formation of a blend composed of polystyrene and the benchmark conjugated polymer MEH‐PPV, we have performed a series of neutron reflectivity experiments focused on studying the film structure as it changes through the thermal annealing process both in the presence and absence of white light. Results indicate the formation of a nonhomogeneous blend upon casting, which becomes stratified with thermal annealing. More importantly, the extent of stratification varies with illumination, where exposure to white light increases stratification. This data suggests in situ illumination is a potential novel tool to manipulate device‐relevant morphologies of optoelectronic active layers throughout the fabrication process, offering a cheap nondestructive tool to effectively tune desired structural parameters. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1142–1149  相似文献   

16.
    
The morphology of a thin film was studied for a binary mixture of asymmetric PS‐b‐PMMA block copolymers on a flat silicon wafer coated with 50 nm thick silicon oxide. AFM and TEM reveal that the PMMA cylinders orient perpendicular to the substrate by tuning the film thickness. Furthermore, grating substrates with different width and depth are used to guide the alignment of the perpendicular cylinders. As a result, an array of highly ordered, hexagonally packed PMMA cylinders in the PS matrix with a domain spacing of less than 25 nm has been produced.

  相似文献   


17.
    
This review deals with nanoporous materials made from the self‐assembly of block copolymers with a special interest in the chemical functions covering the surface of their nanopores. A detailed overview of the existing methods and strategies to generate well‐defined organic functional groups covering the surface of the pore walls is provided. This further enables to finely tune the affinity of the pore walls and to perform well‐defined chemical reactions onto them, which is essential for further dedicated applications.

  相似文献   


18.
Herein, we describe the synthesis of a low‐symmetry monodendron, 3,4‐bis(dodecyloxy)‐5‐[3,4,5‐tris(dodecyloxy)benzyloxy]benzoic acid, following a simple route which starts from gallic acid ethyl ester and does not require any protecting groups. The self‐assembled structures formed by the compound in 3D and 2D were investigated by synchrotron X‐ray scattering and scanning force microscopy (SFM). In 3D, the compound forms a stable crystalline phase with an orthorhombic lattice in which the alkyl chains connected to different benzene rings form crystalline and amorphous domains. Upon cooling from the isotropic melt the compound exhibits a monotropic smectic mesophase. In 100‐nm‐thick films on a neutral substrate the structure loses its biaxiality, adopting a hexagonal columnar structure with the columns oriented parallel to the substrate. By contrast, in ultrathin films on graphite the SFM likely reveals two crystal orientations, which can develop due to the epitaxial adsorption on the substrate of the alkyl chains pertinent to different benzene rings.  相似文献   

19.
The incorporation of single‐wall carbon nanotubes (SWCNTs) in cadmium arachidate film by means of the Langmuir‐Blodgett (LB) technique was investigated as a function of arachidic acid/SWCNT mass ratio at the air/water interface and in Langmuir‐Blodgett films. The behaviour at the air/water interface shows that SWCNTs act as an independent phase with respect to the cadmium arachidate. Deposition conditions are optimized when the weight ratio between the arachidic acid (AA) and SWCNTs is in the range 0.018:1 to 1:1. The general order of the LB multilayered structure was destroyed by the progressive density increase in SWCNT quantity as evidenced by X‐ray reflectivity (XRR) analysis. Scanning electron microscopy images indicated that when a multilayered structure was formed its layers consisted of SWCNT bundles stacked one over the other. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

20.
Herein we describe the structure and dynamics of self-assembled nano-objects generated from poly(ethylene glycol) based (PEG-ylated) coiled-coil hybrid block copolymers. Electron paramagnetic resonance (EPR) experiments on spin-labeled samples provided a strong indication for a parallel alignment of the peptide helices in at least the dimeric coiled-coil nano-object and indicated that the PEG chains are folded rather closely around the peptide core of the nano-objects. The EPR results were supported by AFM studies, which revealed the presence of discrete nanosized objects in thin, spin cast films of the block copolymers on mica substrates. Since their size and structure may be engineered via directed mutations in the amino acid sequence, these nano-objects may be interesting building blocks for the development of supramolecular materials with various potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号