首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Poly(3,4‐ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) is a widely used conductive aqueous dispersion synthesized by using emulsion polymerization method. To further enhance its solution processability and conductivity of PEDOT derivatives, we proposed to replace the nonconductive PSS with conductive poly[2‐(3thienyl)‐ethoxy‐4‐butylsulfonate] (PTEB) as surfactant for the emulsion polymerization of PEDOT. The reaction involved colloid stabilization and doping in one step, and yielded PEDOT:PTEB composite nanoparticles with high electrical conductivity. Contrary to its counterpart containing nonconductive surfactant, PEDOT: PTEB showed increasing film conductivity with increasing PTEB concentration. The result demonstrates the formation of efficient electrical conduction network formed by the fully conductive latex nanoparticles. The addition of PTEB for EDOT polymerization significantly reduced the size of composite particles, formed stable spherical particles, enhanced thermal stability, crystallinity, and conductivity of PEDOT:PTEB composite. Evidence from UV–VIS and FTIR measurement showed that strong molecular interaction between PTEB and PEDOT resulted in the doping of PEDOT chains. X‐ray analysis further demonstrated that PTEB chains were intercalated in the layered crystal structure of PEDOT. The emulsion polymerization of EDOT using conducting surfactant, PTEB demonstrated the synergistic effect of PTEB on colloid stability and intercalation doping of PEDOT during polymerization resulting in significant conductivity improvement of PEDOT composite nanoparticles. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2536–2548, 2008  相似文献   

2.
In this review, PEDOT–PSS is mainly a commercially available PEDOT–PSS, which is a water‐dispersible form of the intrinsically conducting PEDOT doped with the water‐soluble PSS, including its derivatives, copolymers, analogs (PEDOT:PSSs), even their composites via the chemical or physical modification toward the structure of PEDOT and/or PSS. First, we will focus on discussing the scientific importance of PEDOT–PSS in conjunction with its extraordinary properties and broad multidisciplinary applications in organic/polymeric electronics and optoelectronics from the viewpoint of the historical development and the promising application of representative ECPs. Subsequently, versatile film‐forming techniques for the preparation of PEDOT–PSS film electrode were described in details, including common coating approaches and printing techniques, and many emerging preparative methods were mentioned. Then challenges (e.g., conductivity, stability in Water, adhesion to substrate electrode) of PEDOT–PSS film electrode for devices under the high humidity/watery circumstances, especially electrochemical devices are discussed. Fourth, we take PEDOT–PSS film electrode for a relatively new application in sensors as an example, mainly summarized advances in the development of various sensors based on PEDOT–PSSs and their composites in combination with its preparative methods and extraordinary properties. Finally, we give the outlook of PEDOT–PSS for possible applications with the emphasis on PEDOT–PSS film electrode for electrochemical devices, including sensors. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 55, 1121–1150  相似文献   

3.
We have investigated the electrical transport properties of poly(3,4‐ethylenedioxythiophen)/poly(4‐styrene‐sulfonate) (PEDOT:PSS) with PEDOT‐to‐PSS ratios from 1:1 to 1:30. By combining impedance spectroscopy with thermoelectric measurements, we are able to independently determine the variation of electrical conductivity and charge carrier density with PSS content. We find the charge carrier density to be independent of the PSS content. Using a generalized effective media theory, we show that the electrical conductivity in PEDOT:PSS can be understood as percolation between sites of highly conducting PEDOT:PSS complexes with a conductivity of 2.3 (Ωcm)?1 in a matrix of excess PSS with a low conductivity of 10?3 (Ω cm)?1. In addition to the transport properties, the thermoelectric power factors and Seebeck coefficients have been determined. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

4.
Poly(3,4‐ethylenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) has been reported as a successful functional material in a broad variety of applications. One of the most important advantages of PEDOT:PSS is its water‐solubility, which enables simple and environmental friendly manufacturing processes. Unfortunately, this also implies that pristine PEDOT:PSS films are unsuitable for applications in aqueous environments. To reach stability in polar solvents, (3‐glycidyloxypropyl)trimethoxysilane (GOPS) is typically used to cross‐link PEDOT:PSS. Although this strategy is widely used, its mechanism and effect on PEDOT:PSS performance have not been articulated yet. Here, we present a broad study that provides a better understanding of the effect of GOPS on the electrical and electronic properties of PEDOT:PSS. We show that the GOPS reacts with the sulfonic acid group of the excess PSS, causing a change in the PEDOT:PSS film morphology, while the oxidation level of PEDOT remains unaffected. This is at the origin of the observed conductivity changes. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 814–820  相似文献   

5.
A novel strategy via paper as an effective substrate has been introduced as a thermoelectric material in this work. Free‐standing poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/paper composite films are conveniently prepared by a one‐step method of directly writing PEDOT:PSS solution on paper, making the process simple, rapid, and facile. The free‐standing composite films display excellent flexibility, light weight, soaking stability in water, and great potential in large‐scale production. Improved thermoelectric properties are obtained in PEDOT:PSS/paper composite films, owing to the simultaneously enhanced Seebeck coefficient (30.6 μV K?1) and electrical conductivity, and a low thermal conductivity (0.16 W m?1 K?1) compared with pristine PEDOT:PSS films. The results indicate that paper as an effective substrate is suitable for the preparation of high‐performance and flexible thermoelectric materials. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 737–742  相似文献   

6.
The electrical and structural properties of poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS) thin films deposited from aqueous dispersion using different concentrations of selected secondary dopants are studied in detail. An improvement of the electrical conductivity by three orders of magnitude is achieved for dimethyl sulfoxide, sorbitol, ethylene glycol, and N,N‐dimethylformamide, and the secondary dopant concentration dependence of the conductivity exhibits almost identical behavior for all investigated secondary dopants. Detailed analysis of the surface morphology and Raman spectra reveals no presence of the secondary dopant in fabricated films, and thus the dopants are truly causing the secondary doping effect. Although the ratio of benzenoid and quinoid vibrations in Raman spectra is unaffected by doping, the phase transition in PEDOT:PSS films owing to doping is confirmed. Further analysis of temperature‐dependent conductivity reveals 1D variable range hopping (VRH) charge transport for undoped PEDOT:PSS, whereas highly conductive doped PEDOT:PSS films exhibit 3D VRH charge transport. We demonstrate that the charge ‐ hopping dimensionality change should be a fundamental reason for the conductivity enhancement. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1139–1146  相似文献   

7.
Two‐dimensional (2D) WS2 nanosheets (NSs) as a promising thermoelectric (TE) material have gained great concern recently. The low electrical conductivity significantly limits its further development. Herein, we reported an effective method to enhance the TE performance of WS2 NSs by combining poly(3,4‐ethylenedioxythiophene):poly(4‐styrenesulfonate) (PEDOT:PSS). The restacked WS2 NSs thin film with 1T phase structure obtained by a common chemical lithium intercalation show a high Seebeck coefficient of 98 μV K?1 and a poor electrical conductivity of 12.5 S cm?1. The introduction of PEDOT:PSS with different contents obviously improve the electrical conductivity of WS2 NSs thin films. Although a declining Seebeck coefficient was observed, an optimized TE power factor of 45.2 μW m?1 k?1 was achieved for WS2/PEDOT:PSS composite thin film. Moreover, the as‐prepared WS2/PEDOT:PSS thin film can be easily peeled off and transferred to other substrate leading to a more promising application. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55 , 997–1004  相似文献   

8.
Conductive polymer (poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) (PEDOT:PSS) is an attractive platform for the design of flexible electronic, optoelectronic, and (bio)sensor devices. Practical application of PEDOT:PSS often requires an incorporation of specific molecules or moieties for tailoring of its physical–chemical properties. In this article, a method for covalent modification of PEDOT:PSS using arenediazonium tosylates was proposed. The procedure includes two steps: chemisorption of diazo‐cations on the PEDOT:PSS surface followed by thermal decomposition of the diazonium salt and the covalent bond formation. Structural and surface properties of the samples were evaluated by XPS, SEM‐EDX, AFM, goniometry, and a range of electric and optical measurements. The developed modification procedure enables tuning of the PEDOT:PSS surface properties such as conductivity and optical absorption. The possibility to introduce various organic functional groups (from hydrophilic to hydrophobic) and to create new groups for further functionalization makes the developed procedure multipurpose. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 378–387  相似文献   

9.
As conventional organic solvents present inherent toxicity, deep eutectic solvents (DES) have been considered as excellent candidates due to their green characteristics. In this work, thermoelectric properties enhancement of PEDOT:PSS films is achieved by introducing DES as an additive and post‐treatment reagent. Direct addition and post‐treatment approaches lead to a maximum Seebeck coefficient of 29.1 μV K?1 and electrical conductivity of 620.6 S cm?1, respectively. In addition, an optimal power factor is obtained by DES post‐treatment, reaching up to 24.08 μW m?1 K?2, which is approximately four orders of magnitude higher than the pure PEDOT:PSS. Assuming a thermal conductivity of 0.17 W m?1 K?1, the maximum ZT value is estimated to be 0.042 at 300 K. Further, atomic force microscopy and X‐ray photoelectron spectroscopy are performed and suggest that the remarkably enhanced electrical conductivity originates from the removal of the excess insulating PSS and the phase separation between the PEDOT and PSS chains. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 885–892  相似文献   

10.
This study reports the synthesis, curing, and optoelectronic properties of a solution‐processable, thermally cross‐linkable electron‐ and hole‐blocking material containing fluorene‐core and three periphery N‐phenyl‐N‐(4‐vinylphenyl)benzeneamine ( FTV ). The FTV exhibited good thermal stability with Td above 478 °C in nitrogen atmosphere. The FTV is readily cross‐linked via terminal vinyl groups by heating at 160 °C for 30 min to obtain homogeneous film with excellent solvent resistance. Multilayer PLED device [ITO/PEDOT:PSS/cured‐ FTV /MEH‐PPV/Ca (50 nm)/Al (100 nm)] was successfully fabricated using solution processed. Inserting cured‐ FTV is between PEDOT:PSS and MEH‐PPV results in simultaneous reduction in hole injection from PEDOT:PSS to MEH‐PPV and blocking in electron transport from MEH‐PPV to anode. The maximum luminance and maximum current efficiency were enhanced from 1810 and 0.27 to 4640 cd/m2 and 1.08 cd/A, respectively, after inserting cured‐ FTV layer. Current results demonstrate that the thermally cross‐linkable FTV enhances not only device efficiency but also film homogeneity after thermal curing. FTV is a promising electron‐ and hole‐blocking material applicable for the fabrication of multilayer PLEDs based on PPV derivatives. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 000: 000–000, 2012  相似文献   

11.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) and its derivatives are relatively new, and unique members of conducting‐polymers family. In this article, we present an approach for simple, reliable and cost‐efficient electrochemical biosensor for real‐time detection and quantification of phenolic compounds (PhCs). The PEDOT:poly(styrene sulfonate) (PSS) polymer, directly screen‐printed on the surface of the working electrode, was shown to act as an effective electrical conductor but also as an efficient redox mediator. It has also been found suitable for the reduction of quinone ions at low reducing potentials, close to 0 V versus Ag/AgCl, thus minimizing interferences due to other electroactive species present in real samples. Based on these properties, a biosensor based on tyrosinase immobilized on PEDOT:PSS‐modified electrodes was developed allowing the detection of PhCs in surface waters. The biosensor displayed very good performance in terms of sensitivity, detection limit and linear range. Assays using surface water previously spiked with bisphenol A showed that the biosensor was able to detect PhCs in real conditions with no matrix effect. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The aim of this work has been to study the influence of modified hole‐extraction layers on the performance of organic solar cells (OSCs) based on blends of poly (3‐hexylthiophene) and [6,6]‐phenyl‐C61‐butyric acid methyl ester. The hole‐extraction layers consist of poly (3,4‐ethylene dioxythiophene):polystyrene sulfonic acid (PEDOT:PSS) doped with different concentrations of bromine. Compared with pristine OSC without adding bromine to the hole‐extraction layer, the bromine‐doped OSCs show a 49% increase in the power conversion efficiency (from 2.12 to 3.16%), which could be attributed to the increase of electrical and optical properties of PEDOT:PSS films after the addition of bromine. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 50: 125–128, 2012  相似文献   

13.
In this work, the asymmetrical analog of 3,4‐ethylenedioxythiophene (EDOT), thieno[3,4‐b]‐1,4‐oxathiane (EOTT), was synthesized and chemically polymerized first in aqueous solution using poly(styrene sulfonic sodium) (PSS) as the polyelectrolyte to yield poly(thieno[3,4‐b]‐1,4‐oxathiane) (PEOTT)/PSS. As‐formed film exhibited low electrical conductivity (~10?4 S/cm). Alternatively, EOTT together with EDOT (in different molar ratio of 1:1 and 1:5) was copolymerized and the polymer poly(EOTT‐co‐EDOT)/PSS had electrical conductivity of 10?1 S/cm. After dimethyl sulfoxide (DMSO) treatment, the electrical conductivity was enhanced to 100 S/cm; however, the conductivity of the above homopolymer was reduced (~10?5 S/cm). Raman spectroscopy was used to interpret conductivity enhancement or reduction after DMSO treatment. The conductivity decrease of PEOTT/PSS compared to poly(EOTT‐co‐EDOT)/PSS may arise from the conformational change of PEOTT backbone from the quasi‐planar to the distorted planar mode induced by PSS/PSSH through ionic interaction. Kinetic studies revealed that the copolymer had high coloration efficiencies (375 cm2/C), low switching voltages (?0.8 to +0.6 V), decent contrast ratios (45%), moderate response time (1.0 s), excellent stability, and color persistence. An electrochromic device employing poly(3‐methylthiophene) and poly(EOTT‐co‐EDOT)/PSS as the anode and cathode materials was also studied. From these results, poly(EOTT‐co‐EDOT)/PSS would be a promising candidate material for organic electronics. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2285–2297  相似文献   

14.
Abstract

The conductivity of poly(3,4‐ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) film can be enhanced by more than two orders in magnitude by adding a compound with two or more polar groups, such as ethylene glycol (EG), meso‐erythritol (IUPAC name: 1,2,3,4‐tetrahydroxybutane), or 2‐nitroethanol, into the PEDOT:PSS aqueous solution. The mechanism of the increase in conductivity for PEDOT:PSS has been studied using Raman spectroscopy and atomic force microscope (AFM). Here we propose that the change in conductivity is due to the conformational change of PEDOT chains in the film. In untreated PEDOT:PSS films, coil, linear, or expanded‐coil conformations of the PEDOT chains may be present. In treated PEDOT:PSS films, the linear or expanded‐coil conformations may becomes the dominant form for PEDOT chains. This conformational change results in the enhancement of charge‐carrier mobility in the film and leads to enhanced conductivity. The high‐conductivity PEDOT:PSS film is ideal as the electrode for polymer optoelectronic devices. In this article, we report on the fabrication of polymer light‐emitting diodes (PLEDs) and photovoltaic cells (PVs) made using a highly conductive form of PEDOT:PSS as anode, and we demonstrate its performance relative to that of similar device using indium‐tin oxide (ITO) as the anode.  相似文献   

15.
Yu Han 《Soft Materials》2018,16(1):31-36
As a representing conducting polymer, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has been widely employed in organic electronics. However, the electrical conductivity for pristine PEDOT:PSS is only between 0.1 and 0.5 S/cm. In order to enhance the conductivity, the silver nanowires (Ag NWs) were synthesized to dope PEDOT:PSS. It was found the electrical conductivity of PEDOT:PSS was improved to about 200 S/cm with Ag NWs. When double-wall carbon nanotube (DWCNT) was employed together with Ag NWs, the electrical conductivity was further improved to over 2800 S/cm. We proposed the synergistic working model between Ag NWs and CNTs for such enhancement. In this work, UV-vis-NIR spectra and SEM images were also employed to investigate the mechanism of electrical conductivity enhancement.  相似文献   

16.
We demonstrated a simple patterning method for the deposition of polymer electrodes such as poly(3,4‐ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT/PSS). We made use of the difference in wettability between hydrophobic surfaces and hydrophilic surfaces to make the patterns. However, the patterns made with our patterning method created undesirable ring‐like stains, which were caused by the outward flow of the solute within the PEDOT/PSS solution drop. To achieve homogenous device performance, we proposed a simple process for removing this ring‐like stain by making the surface tension gradient with dual solvent system in the PEDOT/PSS solution drop. Because this surface tension gradient causes the inward flow of the solute within the PEDOT/PSS solution drop, the ring‐like stain is removed. Finally, we confirmed the potential of our patterning method for polymer electrodes such as the PEDOT/PSS by fabricating pentacene thin‐film transistors (TFTs) and measuring the electrical properties of the pentacene TFTs. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1590–1596, 2011  相似文献   

17.
Organic thin film nanocomposites, prepared by liquid‐phase exfoliation, were investigated for their superior electrical properties and thermoelectric behavior. Single‐walled carbon nanotubes (SWNT) were stabilized by intrinsically conductive poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) in an aqueous solution. The electrical conductivity (σ) was found to increase linearly as 20 to 95 wt % SWNT. At 95 wt % SWNT, these thin films exhibit metallic electrical conductivity (~4.0 × 105 S m?1) that is among the highest values ever reported for a free‐standing, fully organic material. The thermopower (S) remains relatively unaltered as the electrical conductivity increases, leading to a maximum power factor (S2σ) of 140 μW m?1 K?2. This power factor is within an order of magnitude of bismuth telluride, so it is believed that these flexible films could be used for some unique thermoelectric applications requiring mechanical flexibility and printability. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2013  相似文献   

18.
Planar organic electrochemical transistors (OECTs) using PEDOT:PSS as the channel material and nanostructured carbon (nsC) as the gate electrode material and poly(sodium 4‐styrenesulfonate (PSSNa) gel as the electrolyte were fabricated on flexible polyethylene terephthalate (Mylar®) substrates. The nsC was deposited at room‐temperature by supersonic cluster beam deposition (SCBD). Interestingly, the OECT acts as a hybrid supercapacitor (to give a device that we indicate as transcap). The energy storage ability of transcaps has been studied with two cell configurations: one featuring PEDOT:PSS as the positive electrode and nsC as the negative electrode and another configuration with reversed electrode polarity. Potentiostatic charge/discharge studies show that both supercapacitors show good performance in terms of voltage retention, in particular, when PEDOT:PSS is used as the positive electrode. Galvanostatic charge–discharge characteristics show typical symmetric triangular shape, indicating a nearly ideal capacitive behavior with a high columbic efficiency (close to 100%). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 96–103  相似文献   

19.
The thermoresponsive conductive composite (TCC) thin films and fiber mats, whose electrical property changed with temperature, were fabricated successfully. The thermocrosslinkable and thermoresponsive copolymer, poly(N‐isopropyl acrylamide‐coN‐methylolacrylamide) (PNN), was synthesized. The TCC thin film and fiber mat were fabricated by spin coating and electrospinning process of PEDOT:PSS/PNN solutions, respectively. After thermocrosslinking and doping by DMSO, the composite thin films and fiber mats were obtained. Fibrous structures of TCC fiber mats were observed by SEM. The surface resistance and conductivity of composites were measured. The thermoresponsivity and swelling ratio of TCCs were also studied. The thermoresponsive conductive property was analyzed by measuring the surface resistance of TCCs in water bath under various temperatures from 20 to 50 °C. With the increase of temperature, the TCCs shrank to be dense structure and showed lower surface resistance. The TCC fibers mat exhibited greater sensitivity to temperature than thin film owing to its fibrous structure. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1078–1087  相似文献   

20.
In this research, thermoresponsive and conductive fibers with core‐sheath structure were fabricated by coaxial electrospinning. For preparing the spinning sheath solution, poly‐(N‐isopropylacrylamide‐co‐N‐methylolacrylamide) (PNN) copolymer having thermoresponsive and cross‐linkable properties was synthesized by free‐radical polymerization using redox initiators; it was then mixed with the conductive poly(3,4‐ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) at different weight ratios in water. On the other hand, poly(butyl acrylate‐co‐styrene) (PBS) copolymer synthesized by emulsion polymerization was dissolved in chloroform and used as the spinning core solution. After electrospinning, the fibers were treated at 110 °C for 1 h to cross‐link the PNN portion in the sheath for strengthening the fibers. Well‐defined core‐sheath fibers were observed from SEM pictures; the outside and inside (core) diameters were 568 ± 24 and 290 ± 40 nm, respectively, as determined from TEM pictures. The fiber mats were further doped by DMSO to enhance their conductivity. For the fiber mat with the weight ratio of PEDOT:PSS/PNN at 0.20 in the sheath, its surface conductivity could reach 29.4 S/cm. In addition, the fiber mats exhibited thermoresponsive properties that both swelling ratio and electric resistance decreased with temperature. Furthermore, the fiber mats exhibited improved flexibility as evaluated via bending test. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1299–1307  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号