共查询到20条相似文献,搜索用时 46 毫秒
1.
Mateusz Olszewski Lingchun Li Guojun Xie Andrew Keith Sergei S. Sheiko Krzysztof Matyjaszewski 《Journal of polymer science. Part A, Polymer chemistry》2019,57(24):2426-2435
Cellulose‐based polymer brushes with variable grafting densities and low dispersity were synthesized by grafting poly(n‐butyl acrylate) (PBA) side chains from cellulose‐derived backbones via ATRP. Esterification of commercially available cellulose acetate with 2‐bromoisobutyryl bromide (2‐BiBB) in NMP provided cellulose‐based macroinitiators averaging one initiation site per double glucose unit. ATRP macroinitiators averaging up to 6 initiation sites per repeating double glucose unit were prepared by acylation of microcrystalline cellulose (MCC) in LiCl/DMAc solvent system with 2‐BiBB. A series of linear macroinitiators with narrow MWD were obtained by fractional precipitation process. The content of initiating sites was determined by elemental analysis. (Meth)acrylate side chains were then grafted from the cellulose‐based macroinitiators. The prepared cellulose‐based polymer brushes showed tunable degradation rates dependent on grafting density of the brush, following two different degradation pathways, either cleavage of the main chain or detachment of the side chains. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2426–2435 相似文献
2.
Sarah Sanjuan Yvette Tran 《Journal of polymer science. Part A, Polymer chemistry》2008,46(13):4305-4319
We report the synthesis of random polyampholyte brushes containing 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and methacrylic acid (MAA). The preparation of polyampholyte brushes is performed by the “grafting from” strategy using surface‐initiated atom transfer radical polymerization (ATRP). The first step consists in the formation of the self‐assembled monolayer of the ATRP initiator. Secondly, the chains are grown from the surface by controlled/“living” radical polymerization. The random copolymer brushes and the corresponding homopolymers brushes containing 2‐(dimethylamino)ethyl methacrylate and tert‐butyl methacrylate (tBuMA) are prepared. The last step is the deprotection of the tBuMA form to the MAA segment by in situ hydrolysis reaction. The annealed DMAEMA group can also be converted to the quenched form by in situ quaternization reaction. This results in the formation of “annealed” and “semiannealed” polyampholyte brushes. The “annealed” polyampholyte corresponds to the random copolymer that contains only annealed units, weak acid and weak base. The “semiannealed” polyampholyte consists of the mixture of annealed (weak acid) and quenched (quaternized segment) units. Polyampholyte brushes with various grafting densities are synthesized and carefully characterized using surface techniques such as ellipsometry and FTIR‐ATR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4305–4319, 2008 相似文献
3.
Loïc Bech Tamara Elzein Arnaud Ponche Bénédicte Lepoittevin Philippe Roger 《European Polymer Journal》2009,45(1):246-255
Poly(ethylene terephthalate) (PET) is a semi-crystalline thermoplastic polyester used in many fields. For a variety of applications, however, it is necessary to impart desired properties by introducing specific functional groups on the surface. A simple method for growing polymer brushes by atom transfer radical polymerization (ATRP) on PET films, fibers and fabrics was devised. The different PET surfaces were first reacted with 1,2-diaminoethane by aminolysis reaction to incorporate primary amino and alcohol functions on the surface. Then, in a second step, ATRP initiator was grafted by reaction with bromoisobutyryl bromide. The efficiency of these reactions was confirmed by using colorimetric titration and X-ray photoelectron spectroscopy (XPS). Surface-initiated ATRP was performed in bulk using styrene monomer with CuBr/PMDETA catalytic system in the presence of a sacrificial initiator (ethyl 2-bromoisobutyrate). Good control of the polymerization was obtained as attested by comparison of polystyrene molar masses obtained in solution from sacrificial initiator with those obtained from the surface after cleavage. Wetting properties were found to vary systematically depending to the type of functionalization and grafting. Evolution of surface morphology according to reaction steps was investigated using atomic force microscopy (AFM). 相似文献
4.
Antibacterial poly(ethylene terephthalate) surfaces obtained from thymyl methacrylate polymerization 下载免费PDF全文
Sophie Bedel Bénédicte Lepoittevin Ludovic Costa Olivier Leroy Diana Dragoe Jérôme Bruzaud Jean‐Marie Herry Morgan Guilbaud Marie‐Noëlle Bellon‐Fontaine Philippe Roger 《Journal of polymer science. Part A, Polymer chemistry》2015,53(17):1975-1985
Thymol, an antibacterial agent was used for the preparation of a methacrylic monomer. The conventional and atom transfer radical (ATRP) polymerizations of this monomer were studied using different conditions. Then, the functionalization of poly(ethylene terephthalate) (PET) films by “grafting from” ATRP using this monomer was investigated. In this aim, a three steps procedure was developed. The surfaces were first treated by NH3 plasma treatment to incorporate primary amino functions. Then, in a second step, ATRP initiator was grafted by reaction with bromoisobutyryl bromide. Surface initiated ATRP of thymyl methacrylate was performed in solution in the presence of a sacrificial initiator. The efficiency of these reactions was confirmed by X‐ray photoelectron spectroscopy. Wetting properties and surface energy were found to vary systematically depending to the type of functionalization and grafting. The poly(thymyl methacrylate)‐grafted PET surfaces exhibit resistance to bacterial adhesion toward Pseudomonas aeruginosa, Listeria monocytogenes, and Staphylococcus aureus strains. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1975–1985 相似文献
5.
Kitano H Suzuki H Kondo T Sasaki K Iwanaga S Nakamura M Ohno K Saruwatari Y 《Macromolecular bioscience》2011,11(4):557-564
A CMB monomer was polymerized on a glass plate with a surface-confined ATRP initiator containing a 2-bromoisobutyryl group. The glass plate modified with a PCMB brush was highly hydrophilic and showed a strong resistance against non-specific adsorption of proteins and cell adhesion. Upon ion beam irradiation, furthermore, the PCMB brush was ablated and a hollow space with a designed shape could be made to which HEK293 cells (from human embryonic kidney) and Hep G2 (from human hepatoma) cells non-specifically adhered, while no adhesion of these cells to the non-treated area on the brush was observed. The present results clearly indicate the usefulness of ion beam-printed patterns of anti-biofouling zwitterionic polymer brushes in the biomedical field. 相似文献
6.
O. Altintas B. Yankul G. Hizal U. Tunca 《Journal of polymer science. Part A, Polymer chemistry》2006,44(21):6458-6465
We report a simple preparation of three‐armed (A3‐type) star polymers based on the arm‐first technique, using a click‐reaction strategy between a well‐defined azide‐end‐functionalized polystyrene, poly(tert‐butyl acrylate), or poly(ethylene glycol) precursor and a trisalkyne‐functional initiator, 1,1,1‐tris[4‐(2‐propynyloxy)phenyl]ethane. The click‐reaction efficiency for A3‐type star formation has been investigated with gel permeation chromatography measurements (refractive‐index detector). The gel permeation chromatography curves have been split with the deconvolution method (Gaussian area), and the efficiency of A3‐type star formation has been found to be 87%. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6458–6465, 2006 相似文献
7.
Jianzhong Du Yongming Chen 《Journal of polymer science. Part A, Polymer chemistry》2004,42(9):2263-2271
Poly(ethylene oxide) (PEO) star polymer with a microgel core was prepared by atom transfer radical poylmerization (ATRP) of divinyl benzene (DVB) with mono‐2‐bromoisobutyryl PEO ester as a macroinitiator. Several factors, such as the feed ratio of DVB to the initiator, type of catalysts, and purity of DVB, play important roles during star formation. The crosslinked poly(divinyl benzene) (PDVB) core was further obtained by the hydrolysis of PEO star to remove PEO arms. Size exclusion chromatography (SEC) traces revealed the bare core has a broad molecular weight distribution. PEO–polystyrene (PS) heteroarm star polymer was synthesized through grafting PS from the core of PEO star by another ATRP of styrene (St) because of the presence of initiating groups in the core inherited from PEO star. Characterizations by SEC, 1H NMR, and DSC revealed the successful preparation of the target star copolymers. Scanning electron microscopy images suggested that PEO–PS heteroarm star can form spherical micelles in water/tetrahydrofuran mixture solvents, which further demonstrated the amphiphilic nature of the star polymer. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2263–2271, 2004 相似文献
8.
Joost A. Opsteen Jan C. M. van Hest 《Journal of polymer science. Part A, Polymer chemistry》2007,45(14):2913-2924
Heterotelechelic polystyrene (PS), poly(tert‐butyl acrylate) (PtBA), and poly (methyl acrylate) (PMA), containing both azide and triisopropylsilyl (TIPS) protected acetylene end groups, were prepared in good control (Mw/Mn ≤ 1.24) by atom transfer radical polymerization (ATRP). The end groups were independently applied in two successive “click” reactions, that is: first the azide termini were functionalized and, after deprotection, the acetylene moieties were utilized for a second conjugation step. As a proof of concept, PS was consecutively functionalized with propargyl alcohol and azidoacetic acid, as confirmed by MALDI‐ToF MS. In addition, the same methodology was employed to modularly build up an ABC type triblock terpolymer. Size exclusion chromatography measurements demonstrated first coupling of PtBA to PS and, after the deprotection of the acetylene functionality on PS, connection of PMA, yielding a PMA‐b‐PS‐b‐PtBA triblock terpolymer. The reactions were driven to completion using a slight excess of azide functionalized polymers. Reduction of the residual azide groups into amines allowed easy removal of this excess of polymer by column chromatography. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2913–2924, 2007 相似文献
9.
A. Ramakrishnan R. Dhamodharan J. Rühe 《Journal of polymer science. Part A, Polymer chemistry》2006,44(5):1758-1769
Poly(methyl methacrylate) (PMMA) brushes are grown by surface‐initiated atom transfer radical polymerization on silicon surfaces at various polymerization temperatures. Kinetic studies show that the layer thickness scales linearly with the degree of polymerization of the polymers under some conditions, indicating a constant graft density of the surface‐attached chains. At high temperatures, the layer growth is a controlled process only for short reaction times, and after a rapid increase, the film growth levels off, and a constant thickness is obtained. At lower reaction temperatures, polymers with a lower polydispersity are obtained, but at the expense of a much slower growth rate. Accordingly, intermediate temperatures yield the highest film thickness on experimentally feasible timescales. The reinitiation of these surface‐grafted PMMA chains at room temperature to either extend the chains or grow a chemically different polyglycidylmethacrylate block demonstrates the presence of active ends and the living nature of the surface‐grafted PMMA chains. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1758–1769, 2006 相似文献
10.
Jun Yin Zhishen Ge Hao Liu Shiyong Liu 《Journal of polymer science. Part A, Polymer chemistry》2009,47(10):2608-2619
We report on the synthesis of well‐defined amphiphilic copolymer brushes possessing alternating poly(methyl methacrylate) and poly(N‐isopropylacrylamide) grafts, poly(PMMA‐alt‐PNIPAM), via a combination of atom transfer radical polymerization (ATRP) and click reaction (Scheme 1 ). Firstly, the alternating copolymerization of N‐[2‐(2‐bromoisobutyryloxy)ethyl]maleimide (BIBEMI) with 4‐vinylbenzyl azide (VBA) affords poly(BIBEMI‐alt‐VBA). Bearing bromine and azide moieties arranged in an alternating manner, multifunctional poly(BIBEMI‐alt‐VBA) is capable of initiating ATRP and participating in click reaction. The subsequent ATRP of methyl methacrylate (MMA) using poly(BIBEMI‐alt‐VBA) as the macroinitiator leads to poly(PMMA‐alt‐VBA) copolymer brush. Finally, amphiphilic poly(PMMA‐alt‐PNIPAM) copolymer brush bearing alternating PMMA and PNIPAM grafts is synthesized via the click reaction of poly(PMMA‐alt‐VBA) with an excess of alkynyl‐terminated PNIPAM (alkynyl‐PNIPAM). The click coupling efficiency of PNIPAM grafts is determined to be ~80%. Differential scanning calorimetry (DSC) analysis of poly(PMMA‐alt‐PNIPAM) reveals two glass transition temperatures (Tg). In aqueous solution, poly(PMMA‐alt‐PNIPAM) supramolecularly self‐assembles into spherical micelles consisting of PMMA cores and thermoresponsive PNIPAM coronas, which were characterized via a combination of temperature‐dependent optical transmittance, micro‐differential scanning calorimetry (micro‐DSC), dynamic and static laser light scattering (LLS), and transmission electron microscopy (TEM). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2608–2619, 2009 相似文献
11.
Satu Strandman Petri Pulkkinen Heikki Tenhu 《Journal of polymer science. Part A, Polymer chemistry》2005,43(15):3349-3358
The effect of the steric hindrance on the initiating properties of two multifunctional resorcinarene‐based initiators in atom transfer radical polymerization (ATRP) was studied by using Cu(I)‐complexes of three multidentate amine ligands in the polymerization of tert‐butyl acrylate and methyl methacrylate. These ligands are less sterically hindered and have higher activities in the catalysis of ATRP of (meth)acrylates than 2,2′‐bipyridine. The polymerizations were faster and more controlled than with the 2,2′‐bipyridyl catalyst, but the tendency for bimolecular coupling increased. Even though the initiator was octafunctional, the resulting star polymers had only four arms. This indicates that the steric hindrance arising from the conformations of the initiators determines the structure of the polymer, but the ligand noticeably affects the controllability of the polymerization © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3349–3358, 2005 相似文献
12.
Yanfeng Zhang Hao Liu Jinming Hu Changhua Li Shiyong Liu 《Macromolecular rapid communications》2009,30(11):941-947
We report the first example of the synthesis and the “schizophrenic” micellization behavior of a multi‐responsive double hydrophilic ABC miktoarm star terpolymer. A well‐defined miktoarm star terpolymer consisting of poly(ethylene glycol), poly(2‐(diethylamino)ethyl methacrylate), and poly(N‐isopropylacrylamide) arms, PEG(‐b‐PDEA)‐b‐PNIPAM, was synthesized via the combination of atom transfer radical polymerization (ATRP) and click reaction. Containing pH‐responsive PDEA and thermo‐responsive PNIPAM arms, this novel type of miktoarm star terpolymer molecularly dissolves in aqueous solution at acidic pH and room temperature, but supramolecularly self‐assembles into PDEA‐core micelles at alkaline pH and room temperature, and PNIPAM‐core micelles at acidic pH and elevated temperatures. Most importantly, both types of micellar aggregates possess well‐solvated hybrid coronas.
13.
PIPAAm-brush grafted glass substrates with various graft densities and chain lengths were prepared via surface-initiated ATRP. Temperature-dependent physicochemical properties of the surfaces were characterized by means of ATR/FT-IR spectroscopy, XPS, AFM, and contact angle measurements. ATRP conditions influence the amount of grafted PIPAAm and the surface wettability and roughness of the substrate. Fibronectin adsorption and EC adhesion increased with decreasing density of PIPAAm brushes. EC adhesion was diminished with increasing PIPAAm graft length. Thus, the preparation of PIPAAm brush surface with various graft densities and chain lengths using the surface-initiated ATRP is an effective method for modulating thermo-responsive properties of surfaces. 相似文献
14.
Xiaowu Jiang Lifen Zhang Zhenping Cheng Xiulin Zhu 《Macromolecular rapid communications》2016,37(16):1337-1343
Photoinduced initiators for continuous activator regeneration atom transfer radical polymerization (ATRP) of hydrophilic monomers in heptane/ethanol latent‐biphasic system for copper catalyst separation and recycling have been realized for the first time at room temperature with different wavelengths of visible light LED (green, blue, purple, and white LED) as external stimulus, using 2‐bromophenylacetate as the ATRP initiator and camphorquinone/triethylamine as the photoinitiator. In this system, hybrid catalyst complex (HCc) is synthesized as a novel nonpolar catalyst, which is preferentially dissolved in heptane. The hydrophilic polymers obtained catalyzed by HCc in heptane/ethanol mixture solvent show typical “living” features, for example, the values of Mn,GPC increase linearly with monomer conversion up to quantitative level (>96%) and the molecular weight distributions were kept narrow (Mw/Mn < 1.20) throughout the polymerization process. It should be noted that the excellent controllability of this novel polymerization system can be achieved even after 5 catalyst recycling experiments under LED irradiation.
15.
Makoto Obata Ryota Otobuchi Tadao Kuroyanagi Masaki Takahashi Shiho Hirohara 《Journal of polymer science. Part A, Polymer chemistry》2017,55(3):395-403
The block glycopolymer, poly(2‐(α‐d ‐mannopyranosyloxy)ethyl methacrylate)‐b‐poly(l ‐lactide) (PManEMA‐b‐PLLA), was synthesized via a coupling approach. PLLA having an ethynyl group was successfully synthesized via ring‐opening polymerization using 2‐propyn‐1‐ol as an initiator. The ethynyl functionality of the resulting polymer was confirmed by MALDI‐TOF mass spectroscopy. In contrast, PManEMA having an azide group was prepared via AGET ATRP using 2‐azidopropyl 2‐bromo‐2‐methylpropanoate as an initiator. The azide functionality of the resulting polymer was confirmed by IR spectroscopy. The Cu(I)‐catalyzed 1,3‐dipolar cycloaddition between PLLA and PManEMA was performed to afford PManEMA‐b‐PLLA. The block structure was confirmed by 1H NMR spectroscopy and size exclusion chromatography. The aggregating properties of the block glycopolymer, PManEMA16k‐b‐PLLA6.4k (M n,PManEMA = 16,000, M n,PLLA = 6400) was examined by 1H NMR spectroscopy, fluorometry using pyrene, and dynamic light scattering. The block glycopolymer formed complicated aggregates at concentrations above 21 mg·L?1 in water. The d ‐mannose presenting property of the aggregates was also characterized by turbidimetric assay using concanavalin A. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 395–403 相似文献
16.
Dan Peng Guolin Lu Sen Zhang Xiaohuan Zhang Xiaoyu Huang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(23):6857-6868
A novel amphiphilic graft copolymer consisting of hydrophilic poly(acrylic acid) backbones and hydrophobic poly(butyl methacrylate) side chains was synthesized by successive atom transfer radical polymerization followed by hydrolysis of poly‐(methoxymethyl acrylate) backbone. A grafting‐from strategy was employed for the synthesis of graft copolymers with narrow molecular weight distributions (polydispersity index < 1.40). Hydrophobic side chains were connected to the backbone through stable C? C bonds instead of ester connections. Poly(methoxymethyl acrylate) backbone was easily hydrolyzed to poly(acrylic acid) backbone with HCl without affecting the hydrophobic side chains. The amphiphilic graft copolymer could form stable micelles in water. The critical micelle concentration in water was determined by a fluorescence probe technique. The morphology of the micelles was preliminarily explored with transmission electron microscopy and was found to be spheres. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6857–6868, 2006 相似文献
17.
The syntheses of well‐defined 7‐arm and 21‐arm poly(N‐isopropylacrylamide) (PNIPAM) star polymers possessing β‐cyclodextrin (β‐CD) cores were achieved via the combination of atom transfer radical polymerization (ATRP) and click reactions. Heptakis(6‐deoxy‐6‐azido)‐β‐cyclodextrin and heptakis[2,3,6‐tri‐O‐(2‐azidopropionyl)]‐β‐cyclodextrin, β‐CD‐(N3)7 and β‐CD‐(N3)21, precursors were prepared and thoroughly characterized by nuclear magnetic resonance and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry. A series of alkynyl terminally functionalized PNIPAM (alkyne‐PNIPAM) linear precursors with varying degrees of polymerization (DP) were synthesized via atom transfer radical polymerization (ATRP) of N‐isopropylacrylamide using propargyl 2‐chloropropionate as the initiator. The subsequent click reactions of alkyne‐PNIPAM with β‐CD‐(N3)7 and β‐CD‐(N3)21 led to the facile preparation of well‐defined 7‐arm and 21‐arm star polymers, namely β‐CD‐(PNIPAM)7 and β‐CD‐(PNIPAM)21. The thermal phase transition behavior of 7‐arm and 21‐arm star polymers with varying molecular weights were examined by temperature‐dependent turbidity and micro‐differential scanning calorimetry, and the results were compared to those of linear PNIPAM precursors. The anchoring of PNIPAM chain terminal to β‐CD cores and high local chain density for star polymers contributed to their considerably lower critical phase separation temperatures (Tc) and enthalpy changes during phase transition as compared with that of linear precursors. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 404–419, 2009 相似文献
18.
J. D. Jeyaprakash S. Samuel R. Dhamodharan Jürgen Rühe 《Macromolecular rapid communications》2002,23(4):277-281
The role of activator and deactivator species in the surface‐initiated atom‐transfer radical polymerization of styrene using CuBr/CuBr2/pentamethyldiethylenetriamine as a model system is described. The influence of initially added deactivator with respect to the degree of controlling the layer growth and thickness is studied. Variation of the activator concentration results in changes of the kinetics as well as brush thicknesses consistent with the well‐known rate laws of ATRP. 相似文献
19.
Zhongyu Li Pengpeng Li Junlian Huang 《Journal of polymer science. Part A, Polymer chemistry》2006,44(15):4361-4371
A well‐defined amphiphilic copolymer brush with poly(ethylene oxide) as the main chain and polystyrene as the side chain was successfully prepared by a combination of anionic polymerization and atom transfer radical polymerization (ATRP). The glycidol was first protected by ethyl vinyl ether to form 2,3‐epoxypropyl‐1‐ethoxyethyl ether and then copolymerized with ethylene oxide by the initiation of a mixture of diphenylmethylpotassium and triethylene glycol to give the well‐defined polymer poly(ethylene oxide‐co‐2,3‐epoxypropyl‐1‐ethoxyethyl ether); the latter was hydrolyzed under acidic conditions, and then the recovered copolymer of ethylene oxide and glycidol {poly(ethylene oxide‐co‐glycidol) [poly(EO‐co‐Gly)]} with multiple pending hydroxymethyl groups was esterified with 2‐bromoisobutyryl bromide to produce the macro‐ATRP initiator [poly(EO‐co‐Gly)(ATRP). The latter was used to initiate the polymerization of styrene to form the amphiphilic copolymer brushes. The object products and intermediates were characterized with 1H NMR, matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, Fourier transform infrared, and size exclusion chromatography in detail. In all cases, the molecular weight distribution of the copolymer brushes was rather narrow (weight‐average molecular weight/number‐average molecular weight < 1.2), and the linear dependence of ln[M0]/[M] (where [M0] is the initial monomer concentration and [M] is the monomer concentration at a certain time) on time demonstrated that the styrene polymerization was well controlled. This method has universal significance for the preparation of copolymer brushes with hydrophilic poly(ethylene oxide) as the main chain. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4361–4371, 2006 相似文献
20.
Summary: A novel hydroxyl‐functionalised initiator for atom transfer radical polymerisation (ATRP) was synthesised by esterification reaction of a non‐reducing sugar, meso‐inositol. Due to steric hindrance, one of the six hydroxyl groups present in the sugar was not derivatised to the corresponding 2‐bromoisobutyrate. The macroinitiator was used in ambient temperature ATRP of a hydrophobic monomer, methyl methacrylate (MMA) and a hydrophilic monomer, oligoethylene glycol methacrylate (OEGMA) using tri(ethylene glycol) monomethyl ether (TEGMME) as the polymerisation solvent and CuCl/CuCl2/PMDETA as the catalytic system. Under these conditions, polymerisation proceeded on to high conversion while maintaining low polydispersity giving well‐defined five‐arm star polymers. Hydrolysis under basic conditions was carried out to deduce the number of linear chains that were attached to the sugar.